Local, Private, Efficient Protocols for Succinct Histograms

Raef Bassily

Adam Smith

Pennsylvania State University

STOC 2015
Portland, OR
June 15, 2015

A conundrum

Fashion.com

How many users like Google.com?

Google server

WeirdStuff.com

How can the server compute aggregate statistics about users without storing user-specific information?

Succinct histograms

Set of users = [n].

A set of items (e.g. websites) = [d] = $\{1, ..., d\}$.

Frequency of an item *a* is:

f(a) = (# users holding a)/n

Succinct histogram:

- subset $S \subseteq [d]$ fitems (think "heavy hitters")
- estimates of their frequencies

$$\left\{ \left(v, \hat{f}(v) \right) : v \in \mathcal{S} \right\}$$

• Implicitly, $\hat{f}(v) = 0$ for $v \notin \mathcal{S}$

Local model of Differential Privacy

 $v_i \in [d]$ is item of user $i \in [n]$

 \mathbf{z}_i is the differentially-private report of user i

<u>Definition</u>: Randomized algorithm Q is -local differentially private (LDP) if for any pair v, v' [d], for all events S, ∈

$$\Pr[Q(v) \in S] \le e^{\epsilon} \Pr[Q(v') \in S]$$

LDP for succinct histograms

- Studied under various names [Mishra-Sandler'06, Hsu et al.'12, Erlingsson et al.'14, Fanti et al.'15, Duchi et al.'13].
- Deployed in Google's Chrome (RAPPOR) [Erlingsson et al.'14].

System requirements

Privacy

A protocol that satisfies -EDP

Accuracy

Small worst-case estimation error:

$$\max_{v_1, \dots, v_n} \left| |\hat{\mathbf{f}} - \mathbf{f}| \right|_{\infty} = \max_{v_1, \dots, v_n} \max_{j \in [d]} \left| \hat{f}(j) - f(j) \right|$$

with high probability over coins of Q_i

$v_1 \rightarrow Q_1$ $v_2 \rightarrow Q_2$ $v_2 \rightarrow Q_2$ $v_3 \rightarrow Q_4$ $v_4 \rightarrow Q_4$ $v_5 \rightarrow Q_6$ $v_7 \rightarrow Q_8$ $v_8 \rightarrow Q_8$ $v_8 \rightarrow Q_8$ $v_8 \rightarrow Q_8$ $v_8 \rightarrow Q_8$ $v_9 \rightarrow Q_8$

Computational efficiency

A protocol is efficient if it runs in time poly(log(d), n)

log(d) = # of bits to describe single item

Contributions [B, Smith '15]

- 1. Efficient ϵ LDP protocol with optimal error:
 - run in time poly(log(d), n).
 - Estimate all frequencies up to error $O\left(\sqrt{\frac{\log(d)}{\epsilon^2 n}}\right)$
- 2. Matching lower bound on the error.
- 3. Efficient transformation reducing report length to 1 bit/user in public-coin model.
- Previous protocols either

Exp. Time

- ullet ran in time $\Omega(d)$ [Mishra-Sandler'06, Hsu et al.'12, Erlingsson et al.'14]
- or, had worse error $\sim \left(\frac{\log(d)}{\epsilon^2 n}\right)^{\frac{1}{6}}$ [Hsu et al.'12]

Larger error

• Best previous lower bound was $\sim \frac{1}{\sqrt{n}}$

Construction approach

Single Heavy Hitter (SHH) problem: at least fration of users have the same item, say $v^* \in [d]$ while the rest have (i.e., "nb item")

We give

- Efficient LDP algorithm for SHH with optimal accuracy
- Reduction from general case to SHH that **preserves privacy and accuracy** Inspired by low-space algorithms, e.g. [Gilbert et al.'02].

Construction for the SHH problem

Key step: Show decoding succeeds (i.e., $\hat{v} = v^*$) w.h.p. when

$$\eta \ge \operatorname{const} \times \sqrt{\frac{\log(d)}{\epsilon^2 n}}$$

Construction for the general setting

Key insight:

- Run multiple copies of the SHH protocol.
- Isolate every heavy hitter into a separate copy via hashing.

- W.h.p., every heavy hitter is alone in at least one SHH protocol.
- Same privacy:

 appears it item whose frequency $\geq \eta = \text{const} \cdot \sqrt{\frac{\log(d)}{\epsilon^2 n}}$

Recap: Construction of succinct histograms

Transforming to a protocol with 1-bit reports

Theorem: In a public coin model, any -LD₽ protocol can be transformed into another -EDP protocol with 1-bit reports.

- We modify a generic compression technique of [McGregor et al.'10].
- For our protocols, this transformation is
 - computationally efficient and
 - yields essentially same (optimal) error.

Conclusions

- Local, private protocols for succinct histograms that:
 - attain optimal worst-case error
 - are computationally efficient.
 - have low communication complexity
- More evidence of connections between differential privacy and lowspace algorithms [Gilbert et al.'02, Dwork et al.'10, Blocki et al.'12,...]

Not in this talk:

Lower bound on error

- Give a proof approach that adapts/simplifies a framework by [Duchi et al.'13].
- Show it applies also to the relaxed version of (ϵ, δ) -LDP for all $\delta \ll 1/n$.

Transforming to a protocol with 1-bit reports

Key idea: In public coin model, each user sends a single bit that enables the server to simulate the view of the user's differentially private report.

- This transformation is generic and adapts/modifies the technique of [McGregor et al.'10].
- Public string does not depend on private data: can be generated by untrusted server.
- For our HH protocol, this transformation gives essentially same error and computational efficiency (**Gen** can be computed in O(log(log(d))+log(n))).

Transforming to a protocol with 1-bit reports

- In a public coin model, any \in -LDP protocol can be transformed into another \in -LDP protocol with 1-bit reports.
- Our transformation is a modification to a generic compression technique of [McGregor et al.'10].
- When applied to our protocol for histograms, this transformation gives a protocol that:
 - is computationally efficient protocol (essentially same run time).
 - has optimal error (essentially same error).

Key idea: Each user generates a single *biased* bit that enables the server to simulate the view of the user's differentially private report using the public coins.