List-Decoding of Linear Functions and Analysis of a 2-Round Zero Knowledge Argument

Cynthia Dwork, Microsoft Ronen Shaltiel, Weizmann Adam Smith, MIT Luca Trevisan, Berkeley

De-randomization and 2-Round Zero Knowledge

Cynthia Dwork, Microsoft Ronen Shaltiel, Weizmann Adam Smith, MIT Luca Trevisan, Berkeley

This paper

- Dwork-Stockmeyer: 2-round ZK in non-standard model
- This paper: understand hardness assumption
 - Weaker assumptions (worst-case hardness)
 - Uniform protocols
 - Simpler proofs
- □ Main tools:
 - List-decoding results for code of all linear functions $\{0,1\}^k \rightarrow \{0,1\}^k$
- New use of de-randomization in cryptography [...,Lu'02,...,BOV'03,...]

Zero-Knowledge Arguments [GMR,BCC]

Interactively prove a statement without leaking any extra information

- Extensively studied
- Building block for other protocols
- Round complexity: number of messages

Standard Computational Model

Honest Prover & Verifier are PPT (prob poly-time)
Cheating Prover & Verifier need super-poly time
4 rounds... possible [FS]
3 rounds... open
2 rounds... impossible [GO]

Dwork-Stockmeyer: 2-round ZK

□ Different model (following [DN,DNS,...]):

- fixed polynomial bound on prover's resources (space,time)
- Verifier & simulator are PPT
- □ 2 round argument for NP:

- **Example: D.S.** protocol with linear functions:
 - Honest prover needs $O^*(k)$ space and time
 - Cheating prover needs k^2 space at runtime
- □ Tradeoff: physical understanding vs. efficiency

De-randomization and 2-round ZK

□ Ronen S: "There must be an extractor there."

- Average-case hardness via list-decoding
 - Better reductions
 - Uniform protocols
 - Simpler proofs
- New facts about linear functions

Outline

Basic idea behind DS protocolOur Goal:

linear functions hard for resources $< k^2$

- List-Decoding Functions
- Combinatorial result: advice-bounded provers
- Complexity-theoretic result: small circuit provers

Dwork-Stockmeyer: 2-round ZK

- **\square** Proof takes only $O^*(k)$ bits
- Cheating prover must compute f(x) on the fly
- Soundness $\Leftrightarrow f$ is hard on average for **P**
- □ Hardness not enough...

Proof efficiency

■ For proof to be easy:

■*f* is linear

$$\begin{bmatrix} f(x) \\ f(x) \end{bmatrix} = \left(\begin{array}{c} \mathbf{M}_{f} \\ k \times k \end{array} \right) \begin{bmatrix} x \\ x \end{bmatrix}$$

Our Goal: Hard Linear Functions

$$\begin{pmatrix} f(x) \\ f \end{pmatrix} = \begin{pmatrix} k \times k \\ M_f \end{pmatrix} \begin{bmatrix} x \\ x \end{bmatrix}$$

- □ Hard for prover*: Prob_x[P(x) = f(x)] ≤ ε
 □ Always easy with k² space
 We want hardness for < k² resources (e.g. k^{3/2})
 □ Two models:
 - Advice-bounded prover: cannot store all of M_f

– Time-bounded prover: circuit size $< k^2$

Results

Advice-bounded provers

- Random function hard for prover with advice $< k^2$ bits
- Simpler proof of DS result

□ Time-bounded provers

- Security under worst-case hardness assumption
- Assume: $\exists h \in \text{DTIME}(2^{O(n)})$
 - worst-case hard for MAM-circuits of size $2^{n(1/2 + \gamma)}$
- Uniform protocol secure against prover with size $k^{1+2\gamma}$

Outline

Basic idea behind DS protocol
Our Goal:

linear functions hard for resources < k²

List-Decoding Functions
Combinatorial result: advice-bounded provers
Complexity-theoretic result: small circuit provers

Linear Functions as Codewords

	Coding space	Distance
Usual notion	Strings Σ^N	Hamming
De-randomization	Functions $\{0,1\}^k \rightarrow \{0,1\}^k$	$\operatorname{Prob}_{\chi}[f(\mathbf{x}) \neq g(\mathbf{x})]$

Conceptually different

Technically identical

 $g \rightarrow (g(0...00), g(0...01), g(0...10), ..., g(1...11))$

vector with entries in $\Sigma = \{0,1\}^k$

List-Decodable Codes

□ Codewords are functions {0,1}^k → {0,1}^k
 □ Distance(*f*,*g*) = Pr_x [f(x) ≠ g(x)]

Error-Correcting Code: Every ball of radius *R* contains at most one point

List-Decodable Codes

□ Codewords are functions {0,1}^k → {0,1}^k
 □ Distance(*f*,*g*) = Pr_x[*f*(x) ≠ *g*(x)]

Error-Correcting Code: Every ball of radius *R* contains at most one point

List-Decodable Code: Every ball of radius 1- \mathcal{E} contains at most $t(\mathcal{E})$ points

Why List Decodability?

 $\square \operatorname{Fix} g: \{\overline{0,1}\}^k \to \{0,1\}^k$

Q: How many $k \times k$ matrices M such that $\Pr_{x}[g(x) = M.x] \ge \varepsilon$?

A: $(1/\epsilon)^{2k}$ = small polynomial number of matrices

□ Fix prover **P** who wants to cheat

Q: How many functions *f* such that
P can cheat w. prob. ≥ ε?
□ Same question! (almost... P can be randomized)

Advice-Bounded Provers/

List-decodable codes give incompressible functions

 \square Suppose that prover's advice is at most $A < k^2$ bits As much pre-processing as desired Only keeps A bits about f (e.g. smart card) \Box How many f s.t. \exists prover w/ho cheats w. prob. $\geq \mathcal{E}$? Each prover can cheat for $(1/\epsilon)^{2k}$ linear functions^{*} Prover described by advice: 2^A possible provers Describe any "cheatable" f using $A + 2 k \log(1/\epsilon)$ bits As long as $A < k^2 - 2 \text{ k} \log(1/\epsilon) - 100 \text{ bits}$, Prob. that random function is "cheatable" at most 2⁻¹⁰⁰

Proving List-Decodability

- $\square \operatorname{Fix} g: \{\overline{0,1}\}^k \to \{0,1\}^k$
- **Q:** How many $k \times k$ matrices M such that $\Pr_{x}[g(x) = M.x] \ge \varepsilon$?
- A: $(1/\varepsilon)^{2k}$ = small polynomial number of matrices
- Usual proof technique (Johnson bound) fails
- Problem: min. distance of code is $\frac{1}{2}$
 - (Flip one bit in a matrix)
- □ We want list-decoding radius $1-\varepsilon$.

Proof^{*} that list size is $(1/\mathcal{E})^{2k+1}$

- \square Meshulam, Shpilka: \exists subspace V of matrices s.t. $\forall M, M' \in V, \Pr_{\mathcal{X}}[M.x \neq M'.x] \geq 1 - \varepsilon^2$ $\square Dimension(V) = k^2 - 2 k \log(1/\varepsilon)$ Apply Johnson bound to V: Ball of radius 1- ε contains O(1/ ε) elements of V \Box V has $(1/\varepsilon)^{2k}$ cosets, each with min. distance $1-\varepsilon^2$ **\square** Ball of radius 1- ε contains 1/ ε from each coset
- **Total number of functions is** $(1/\varepsilon)^{2k+1}$

Advice-Bounded Provers

- Linear functions form a list-decodable code
- Random matrix is secure against advice-bounded provers
- Resulting protocol is non-uniform
 - Different matrix for every setting of k
 - No compact description of matrix
- □ Uniform protocol?
 - No! Advice-bounded prover has time to reconstruct the whole matrix

Outline

Basic idea behind DS protocol
 Our Goal:

 linear functions hard for resources < k²
 List-Decoding Functions
 Combinatorial result: advice-bounded provers
 Complexity-theoretic result: small circuit provers

A Basic Decoder

□ Suppose $\Pr_{\chi}[\mathbf{P}(x) = M.x] \ge \varepsilon$ □ Then $\mathcal{D}^{\mathbf{P}}() = M$

time $(\mathcal{D}^{\mathbf{P}}) > k^2$

A Better Decoder: Output 1 bit

■ Suppose $\Pr_{\chi}[\mathbf{P}(x) = M.x] \ge \varepsilon$ ■ Then $\mathcal{D}^{\mathbf{P}}(i, j) = M_{i, j}$

time $(\mathcal{D}^{\mathbf{P}})$ can be very low... $O(\text{ time}(\mathbf{P}) k^{\delta})$ Why does this help?

Hardness-Randomness Paradigm

□ Suppose $h: \{0,1\}^{2 \log k} \rightarrow \{0,1\}$ is hard for circuits of size $k^{3/2}$ (note: k^2 is trivial) \Box Use M = TT(h) TT(h) = (h(0...00), h(0...01), h(0...10), ..., h(1...11)) $\square \mathbf{P}$ cheats in time $< k^{3/2} - \delta$ $\Rightarrow \mathcal{D} \text{ computes } M_{i,j} = h(i, j) \text{ in time } < k^{3/2}$

$$i,j, \mathcal{D}$$

$$x \rightarrow \mathbf{P} \rightarrow P(x)$$

$$M_{i,}$$

Our Decoder: Uses Extra Help

time $(\mathcal{D}^{\mathbf{P}})$ can be very low... $O(\text{ time}(\mathbf{P}) k^{\delta})$

Results

- □ Connection to list-decoding (standard)
- Advice-bounded provers
 - Random function hard for prover with advice $< k^2$ bits
 - Simpler proof of DS result
- Time-bounded provers
 - Assume: $\exists h \in DTIME(2^{O(n)})$
 - worst-case hard for MAM-circuits of size $2^{n(\frac{1}{2} + \gamma)}$
 - Uniform protocol secure against prover with size $k^{1+2\gamma}$

Conclusions

- Better understanding of DS model & protocol
- Open questions
- 1. Better decoding \rightarrow nicer assumptions
- 2. Increase to arbitrary polynomial gap
 - Possible if one assumes completely malleable encryption
- 3. Other uses of de-randomization in crypto

