List-Decoding of Linear Functions and Analysis of a
 2-Round Zero Knowledge Argument

Cynthia Dwork, Microsoft
Ronen Shaltiel, Weizmann
Adam Smith, MIT
Luca Trevisan, Berkeley

De-randomization and
 2-Round Zero Knowledge

Cynthia Dwork, Microsoft
Ronen Shaltiel, Weizmann
Adam Smith, MIT
Luca Trevisan, Berkeley

This paper

- Dwork-Stockmeyer: 2-round ZK in non-standard model
- This paper: understand hardness assumption
- Weaker assumptions (worst-case hardness)
- Uniform protocols
- Simpler proofs
- Main tools:
- List-decoding results for code of all linear functions $\{0,1\}^{k} \rightarrow\{0,1\}^{k}$
\square New use of de-randomization in cryptography [...,Lu'02, .., BOV'03,...]

Zero-Knowledge Arguments [GMR,BCC]

- Interactively prove a statement without leaking any extra information
- Extensively studied
\square Building block for other protocols
- Round complexity: number of messages

$$
\mathrm{P} \xlongequal{\rightleftarrows} \mathrm{~V}
$$

Standard Computational Model

Honest Prover \& Verifier are PPT (prob poly-time)
Cheating Prover \& Verifier need super-poly time

- 4 rounds... possible [FS]
- 3 rounds... open
- 2 rounds... impossible [GO]

Dwork-Stockmeyer: 2-round ZK

ㅁ Different model (following [DN,DNS,...]):

- fixed polynomial bound on prover's resources (space,time)
■ Verifier \& simulator are PPT
- 2 round argument for NP:

- Example: D.S. protocol with linear functions:
- Honest prover needs $O^{*}(k)$ space and time
- Cheating prover needs k^{2} space at runtime
- Tradeoff: physical understanding vs. efficiency

De-randomization and 2-round ZK

- Ronen S: "There must be an extractor there."
\square Average-case hardness via list-decoding
- Better reductions
- Uniform protocols
- Simpler proofs
\square New facts about linear functions

Outline

\square Basic idea behind DS protocol

- Our Goal:
- linear functions hard for resources $<k^{2}$
\square List-Decoding Functions
\square Combinatorial result: advice-bounded provers
- Complexity-theoretic result: small circuit provers

Dwork-Stockmeyer: 2-round ZK

Public function $f:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$

Limited resources

Dwork-Stockmeyer: 2-round ZK

Public function $f:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$

$$
x \in_{R}\{0,1\}^{k}
$$

Proof of "Either ϕ is true or I know $f(x)$ "
\square Proof takes only $O^{\prime}(k)$ bits
\square Cheating prover must compute $f(x)$ on the fly
\square Soundness $\Leftrightarrow f$ is hard on average for \mathbf{P}

- Hardness not enough...

Proof efficiency

Public function $f:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$

$\mathbf{P} \underset{\sim}{\longleftrightarrow}$ Proof of "Either ϕ is true or I know $f(x)$ "
\square For proof to be easy:
$\square f$ is linear $\quad(f(x))=\binom{M_{f}}{k \times k}(x)$

Our Goal: Hard Linear Functions

$$
f(x)=\left(\mathbf{M}_{f}^{k \times k}\right)(x)
$$

\square Hard for prover ${ }^{*}: \quad \operatorname{Prob}_{x}[\mathbf{P}(x)=f(x)] \leq \varepsilon$

- Always easy with k^{2} space
- We want hardness for $<k^{2}$ resources (e.g. $k^{3 / 2}$)

■ Two models:

- Advice-bounded prover: cannot store all of M_{f}
- Time-bounded prover: circuit size $<k^{2}$

Results

\square Advice-bounded provers

- Random function hard for prover with advice $<k^{2}$ bits
- Simpler proof of DS result
\square Time-bounded provers
- Security under worst-case hardness assumption
- Assume: $\exists \mathrm{h} \in \operatorname{DTIME}\left(2^{O(n)}\right)$
worst-case hard for MAM-circuits of size $2^{n(1 / 2+\gamma)}$
- Uniform protocol secure against prover with size $k^{1+2 \gamma}$

Outline

Basic idea behind DS protocol
E Our Goal:

- linear functions hard for resources $<k^{2}$
\square List-Decoding Functions
\square Combinatorial result: advice-bounded provers
- Complexity-theoretic result: small circuit provers

Linear Functions as Codewords

	Coding space	Distance
Usual notion	Strings Σ^{N}	Hamming
De-randomization	Functions $\{0,1\}^{k} \rightarrow\{0,1\}^{k}$	Prob $_{x}[f(\mathrm{x}) \neq g(\mathrm{x})]$

\square Conceptually different
\square Technically identical

vector with entries in $\Sigma=\{0,1\}^{k}$

List-Decodable Codes

\square Codewords are functions $\{0,1\}^{k} \rightarrow\{0,1\}^{k}$
\square Distance $(f, g)=\operatorname{Pr}_{x}[\mathrm{f}(\mathrm{x}) \neq \mathrm{g}(\mathrm{x})]$

List-Decodable Codes

\square Codewords are functions $\{0,1\}^{k} \rightarrow\{0,1\}^{k}$

- Distance $(f, g)=\operatorname{Pr}_{x}[f(\mathrm{x}) \neq g(\mathrm{x})]$

Error-Correcting Code:
Every ball of radius R contains at most one point

List-Decodable Code:
Every ball of radius $1-\varepsilon$ contains at most $t(\varepsilon)$ points

Why List Decodability?

\square Fix $g:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$
Q: How many $k \times k$ matrices M such that

$$
\operatorname{Pr}_{\mathrm{x}}[g(x)=\mathrm{M} \cdot x] \geq \varepsilon ?
$$

A: $(1 / \varepsilon)^{2 k}=$ small polynomial number of matrices
\square Fix prover \mathbf{P} who wants to cheat
Q: How many functions f such that
P can cheat w. prob. $\geq \varepsilon$?
\square Same question! (almost... \mathbf{P} can be randomized)

Advice-Bounded Provers/

List-decodable codes give incompressible functions

\square Suppose that prover's advice is at most $A<k^{2}$ bits

- As much pre-processing as desired
- Only keeps A bits about f (e.g. smart card)
\square How many f s.t. \exists prover who cheats w. prob. $\geq \varepsilon$?
- Each prover can cheat for $(1 / \varepsilon)^{2 k}$ linear functions*
- Prover described by advice: 2^{A} possible provers
- Describe any "cheatable" f using $A+2 k \log (1 / \varepsilon)$ bits
- As long as $A<k^{2}-2 \mathrm{k} \log (1 / \varepsilon)-100$ bits, Prob. that random function is "cheatable" at most 2-100

Proving List-Decodability

\square Fix $g:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$
Q: How many $k \times k$ matrices M such that

$$
\operatorname{Pr}_{x}[g(x)=M \cdot x] \geq \varepsilon ?
$$

A: $(1 / \varepsilon)^{2 k}=$ small polynomial number of matrices
\square Usual proof technique (Johnson bound) fails
\square Problem: min. distance of code is $1 / 2$

- (Flip one bit in a matrix)
\square We want list-decoding radius $1-\varepsilon$.

Proof ${ }^{*}$ that list size is $(1 / \varepsilon)^{2 k+1}$

\square Meshulam, Shpilka: \exists subspace V of matrices s.t.

$$
\forall M, M^{\prime} \in \mathrm{V}, \operatorname{Pr}_{x}\left[M . \mathrm{x} \neq M^{\prime} \cdot \mathrm{x}\right] \geq 1-\varepsilon^{2}
$$

\square Dimension $(V)=k^{2}-2 k \log (1 / \varepsilon)$
\square Apply Johnson bound to V:
Ball of radius $1-\varepsilon$ contains $\mathrm{O}(1 / \varepsilon)$ elements of V

- V has $(1 / \varepsilon)^{2 k}$ cosets, each with min. distance $1-\varepsilon^{2}$
\square Ball of radius $1-\varepsilon$ contains $1 / \varepsilon$ from each coset
- Total number of functions is $(1 / \varepsilon)^{2 k+1}$

Advice-Bounded Provers

\square Linear functions form a list-decodable code
\square Random matrix is secure against advice-bounded provers
\square Resulting protocol is non-uniform

- Different matrix for every setting of k
- No compact description of matrix
\square Uniform protocol?
- No! Advice-bounded prover has time to reconstruct the whole matrix

Outline

Basic idea behind DS protocol
E Our Goal:

- linear functions hard for resources $<k^{2}$

பList-Decoding Functions
Combinatorial result: advice-bounded provers

- Complexity-theoretic result: small circuit provers

A Basic Decoder

\square Suppose $\operatorname{Pr}_{x}[\mathbf{P}(x)=M . x] \geq \varepsilon$

- Then $\quad \mathcal{D}^{\mathrm{P}}()=M$

time $\left(\mathcal{D}^{P}\right)>k^{2}$

A Better Decoder: Output 1 bit

\square Suppose $\operatorname{Pr}_{x}[\mathbf{P}(x)=M . x] \geq \varepsilon$
\square Then $\quad \mathcal{D}^{\mathbf{P}}(i, j)=M_{i, j}$

$$
\xrightarrow{i, j} \xrightarrow{\substack{\mathcal{D} \\ x \rightarrow \mathbf{P} \\ \hline P(x)}} \stackrel{M_{i, j}}{ }
$$

time $\left(\mathcal{D}^{\mathbf{P}}\right)$ can be very low... $O\left(\operatorname{time}(\mathbf{P}) k^{\delta}\right)$ Why does this help?

Hardness-Randomness Paradigm

\square Suppose $h:\{0,1\}^{2 \log k} \rightarrow\{0,1\}$
is hard for circuits of size $k^{3 / 2}$ (note: k^{2} is trivial)

- Use $\mathrm{M}=\mathrm{TT}(h)$
$\operatorname{TT}(h)=(h(0 \ldots . .00), h(0 \ldots 01), h(0 \ldots 10), \ldots, h(1 \ldots 11))$
$\boldsymbol{\square} \mathbf{P}$ cheats in time $<k^{3 / 2-\delta}$
$\Rightarrow \mathcal{D}$ computes $M_{i, j}=h(i, j)$ in time $<k^{3 / 2}$

$$
i, j_{i} \mathcal{D}_{x \rightarrow}
$$

Our Decoder: Uses Extra Help

\square Suppose $\operatorname{Pr}_{x}[\mathbf{P}(x)=M . x] \geq \varepsilon$

- Then

$$
\mathcal{D}^{\mathbf{P}}(i, j)=M_{i, j}
$$

non-determinism non-uniform advice

$$
\xrightarrow{i, j} \underset{x \rightarrow P}{ }
$$

time $\left(\mathcal{D}^{\mathbf{P}}\right)$ can be very low... $O\left(\operatorname{time}(\mathbf{P}) k^{\boldsymbol{\delta}}\right)$

Results

\square Connection to list-decoding (standard)
\square Advice-bounded provers

- Random function hard for prover with advice $<k^{2}$ bits
- Simpler proof of DS result
\square Time-bounded provers
- Assume: $\exists \mathrm{h} \in \operatorname{DTIME}\left(2^{O(n)}\right)$ worst-case hard for MAM-circuits of size $2^{n(1 / 2+\gamma)}$
- Uniform protocol secure against prover with size $k^{1+2 \gamma}$

Conclusions

ㅁ Better understanding of DS model \& protocol

- Open questions

1. Better decoding \rightarrow nicer assumptions
2. Increase to arbitrary polynomial gap

- Possible if one assumes completely malleable encryption

3. Other uses of de-randomization in crypto

Questions?

