
List-Decoding of Linear Functions
and Analysis of a

2-Round Zero Knowledge Argument

Cynthia Dwork, Microsoft
Ronen Shaltiel, Weizmann

Adam Smith, MIT
Luca Trevisan, Berkeley

De-randomization
and

2-Round Zero Knowledge

Cynthia Dwork, Microsoft
Ronen Shaltiel, Weizmann

Adam Smith, MIT
Luca Trevisan, Berkeley

�

���������	

� Dwork-Stockmeyer: 2-round ZK in non-standard model

� This paper: understand hardness assumption
� Weaker assumptions (worst-case hardness)

� Uniform protocols

� Simpler proofs

� Main tools:
� List-decoding results for code of

all linear functions {0,1}k � {0,1}k

� New use of de-randomization in cryptography
[…,Lu’02,…,BOV’03,…]

�

�	������������	������� ���������

� Interactively prove a statement without leaking
any extra information

� Extensively studied

� Building block for other protocols

� Round complexity: number of messages

P V

�

������	���������������������

Honest Prover & Verifier are PPT (prob poly-time)

Cheating Prover & Verifier need super-poly time

�4 rounds… possible [FS]

�3 rounds… open

�2 rounds… impossible [GO]

?

�

 ��	!����"!��#�	$�%�	�����

� Different model (following [DN,DNS,…]):
� fixed polynomial bound on prover’s resources

(space,time)
� Verifier & simulator are PPT

� 2 round argument for NP:

� Example: D.S. protocol with linear functions:
� Honest prover needs O*(k) space and time

� Cheating prover needs k2 space at runtime

� Tradeoff: physical understanding vs. efficiency

P Vchallenge

response

�

 ��	������&����������%�	�����

� Ronen S: “There must be an extractor there.”

� Average-case hardness via list-decoding
� Better reductions

� Uniform protocols

� Simpler proofs

� New facts about linear functions

�

'������

� Basic idea behind DS protocol

� Our Goal:

� linear functions hard for resources < k2

� List-Decoding Functions

� Combinatorial result: advice-bounded provers

� Complexity-theoretic result: small circuit provers

�

 ��	!����"!��#�	$�%�	�����

P Vchallenge

response

Public function f :{0,1}k � {0,1}k

Limited
resources

�	

 ��	!����"!��#�	$�%�	�����

� Proof takes only O*(k) bits
� Cheating prover must compute f(x) on the fly

� Soundness � f is hard on average for P
� Hardness not enough…

P V

Public function f :{0,1}k � {0,1}k

x �R {0,1}k

Proof of “Either φ is true or I know f (x)”

φ φ

��

(��)��))�"���"#

� For proof to be easy:

� f is linear

VP

Public function f :{0,1}k � {0,1}k

=f(x) Mf x
k � k

x �R {0,1}k

Proof of “Either φ is true or I know f (x)”

�

'�	�����$�*�	��+����	�,��"�����

� Hard for prover*: Probx[P(x) =f (x)] � ε

� Always easy with k2 space

� We want hardness for < k2 resources (e.g. k3/2)

� Two models:
– Advice-bounded prover: cannot store all of Mf
– Time-bounded prover: circuit size < k2

=f (x) Mf x
k � k

��

�������

� Advice-bounded provers
� Random function hard for prover with advice < k2 bits

� Simpler proof of DS result

� Time-bounded provers
� Security under worst-case hardness assumption

� Assume: � h � DTIME(2O(n))
worst-case hard for MAM-circuits of size 2n(½ + γ)

� Uniform protocol secure against prover with size k1+2γ

��

'������

� Basic idea behind DS protocol

� Our Goal:

� linear functions hard for resources < k2

� List-Decoding Functions

� Combinatorial result: advice-bounded provers

� Complexity-theoretic result: small circuit provers

��

+����	�,��"���������������	��

Probx[f (x) ≠ g (x)]
Functions

{0,1}k � {0,1}kDe-randomization

HammingStrings ΣNUsual notion

DistanceCoding space

� Conceptually different

� Technically identical

g � (g(0….00), g(0…01), g(0…10), … , g(1…11))

vector with entries in Σ = {0,1}k

��

+���� �"���-��������

� Codewords are functions {0,1}k → {0,1}k

� Distance(f,g) = Pr x [f(x) ≠ g(x)]

Error-Correcting Code:
Every ball of radius R contains
at most one pointR

��

+���� �"���-��������

� Codewords are functions {0,1}k → {0,1}k

� Distance(f,g) = Pr x [f(x) ≠ g(x)]

Error-Correcting Code:
Every ball of radius R contains
at most one point

List-Decodable Code:
Every ball of radius 1- ε
contains at most t(ε) points

1-ε

��

.�#�+���� �"���-����#/

� Fix g:{0,1}k � {0,1}k

Q: How many k � k matrices M such that
Prx[g(x) = M.x] � ε ?

A: (1/ε)2k = small polynomial number of matrices

� Fix prover P who wants to cheat

Q: How many functions f such that
P can cheat w. prob. � ε ?

� Same question! (almost… P can be randomized)

��

��0�"����������(�0�	�

� Suppose that prover’s advice is at most A < k2 bits
� As much pre-processing as desired
� Only keeps A bits about f (e.g. smart card)

� How many f s.t. � prover who cheats w. prob. � ε?
� Each prover can cheat for (1/ε)2k linear functions*

� Prover described by advice: 2A possible provers

� Describe any “cheatable” f using A + 2 k log(1/ε) bits

� As long as A < k2 -2 k log(1/ε) -100 bits,
Prob. that random function is “cheatable” at most 2-100

List-decodable codes
give incompressible

functions

	

(�0����+���� �"���-����#

� Fix g:{0,1}k � {0,1}k

Q: How many k � k matrices M such that
Prx[g(x) = M.x] � ε ?

A: (1/ε)2k = small polynomial number of matrices

� Usual proof technique (Johnson bound) fails

� Problem: min. distance of code is ½
� (Flip one bit in a matrix)

� We want list-decoding radius 1-ε.

�

(��)1 ������������&�����(1/ε)2k+1

� Meshulam, Shpilka: � subspace V of matrices s.t.

�M, M’ � V, Prx[M.x ≠ M’.x] � 1- ε 2

� Dimension(V) = k2 – 2 k log(1/ε)

� Apply Johnson bound to V:
Ball of radius 1-ε contains O(1/ε) elements of V

� V has (1/ε)2k cosets, each with min. distance 1-ε2

� Ball of radius 1-ε contains 1/ε from each coset

� Total number of functions is (1/ε)2k+1

��0�"����������(�0�	�

� Linear functions form a list-decodable code
� Random matrix is secure against

advice-bounded provers
� Resulting protocol is non-uniform

� Different matrix for every setting of k
� No compact description of matrix

� Uniform protocol?
� No! Advice-bounded prover has time

to reconstruct the whole matrix

�

'������

� Basic idea behind DS protocol

� Our Goal:

� linear functions hard for resources < k2

� List-Decoding Functions

� Combinatorial result: advice-bounded provers

� Complexity-theoretic result: small circuit provers

�

D
M

������"� �"���	

� Suppose Prx[P(x) = M.x] � ε
� Then DP() = M

x P P(x)

time (DP) > k2

�

Di,j Mi, j

�������	� �"���	$�'������2�-��

� Suppose Prx[P(x) = M.x] � ε
� Then DP(i, j) = Mi, j

x P P(x)

time (DP) can be very low… O(time(P) kδ)
Why does this help?

�

*�	�����������������(�	�����

� Suppose h: {0,1}2 log k � {0,1}

is hard for circuits of size k3/2 (note: k2 is trivial)

� Use M = TT(h)
TT(h) = (h(0….00), h(0…01), h(0…10), … , h(1…11))

�P cheats in time < k3/2 – δ

	 D computes Mi,j = h(i, j) in time < k3/2

Di,j Mi, j
x P P(x)

�

� Suppose Prx[P(x) = M.x] � ε
� Then DP(i, j) = Mi, j

Di,j Mi, j

'�	� �"���	$�3����45�	��*���

x P P(x)

time (DP) can be very low… O(time(P) kδ)

non-determinism
non-uniform advice

Need to assume
hardness for non-

deterministic circuits
(MAM)

�

�������

� Connection to list-decoding (standard)

� Advice-bounded provers
� Random function hard for prover with advice < k2 bits

� Simpler proof of DS result

� Time-bounded provers
� Assume: � h � DTIME(2O(n))

worst-case hard for MAM-circuits of size 2n(½ + γ)

� Uniform protocol secure against prover with size k1+2γ

�

���"�������

� Better understanding of DS model & protocol

� Open questions

1. Better decoding � nicer assumptions

2. Increase to arbitrary polynomial gap
� Possible if one assumes completely malleable

encryption

3. Other uses of de-randomization in crypto

Questions?

