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Using Noisy Data for Passwords

• Crypto moving beyond encryption / authentication

• Newer applications often poorly modeled 

– Ad hoc solutions

– Get broken!

• Crypto Theory: models, proofs

• This talk:– formal framework

– provably secure constructions

for using biometric data for authentication, key recovery



3

The Problem: We’re Human

• Secure cryptographic keys: long, random strings

• Too hard to remember

• Keep copy under doormat?

• Use short, easy-to-remember password (PIN)?

– easy to remember = easy to guess
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Passwords You Won’t Forget

• Personal Info 
– Mom’s maiden name, Date of birth

– Name of first pet, name of street where you grew up

• Biometrics
– Fingerprints

– Iris Scan

– Face recognition

– Hand Geometry

– Voice print

– Signature
?=
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Issues with Personal Info / Biometrics

�Noise and human error

�Not Uniformly Random

� Should Not Be Stored in the Clear
• Fingerprint is Variable

– Finger orientation, cuts, scrapes

• Personal info subject to memory failures / format
– Name of your first girl/boy friend: 

“Um… Catherine? Katharine? Kate? Sue?”

• Measured data will be “close” to original 
in some metric (application-dependent)
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Issues with Personal Info / Biometrics

�Noise and human error

�Not Uniformly Random

� Should Not Be Stored in the Clear• (Crypto keys should be random)

• Fingerprints are represented as list of features
– All fingers look similar

• Distribution is unknown
– Ivanov is rare last name… unless first name is Sergei
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Issues with Personal Info / Biometrics

�Noise and human error

�Not Uniformly Random

� Should Not Be Stored in the Clear

�Li1mited Changes Possible• Theft is easy, makes info useless
– Customer service representatives learn 

Mom’s maiden name, Social Security Number, …

• Keys cannot be changed many times
– 10 fingers, 2 eyes, 1 mother
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Issues with Personal Info / Biometrics

�Noise and human error

�Not Uniformly Random

� Should Not Be Stored in the Clear

How can we use 
this stuff as a 

password?

Do we want to use 
this stuff as a 

password?
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Issues with Personal Info / Biometrics

�Noise and human error

�Not Uniformly Random

� Should Not Be Stored in the Clear

How can we use 
this stuff as a 

password?
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Example: Authentication
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Authentication [EHMS,JW]

Alice Server“How do I know 
you’re Alice”?

Solution #1: Store a copy on server
Problem: Password in the Clear

?
�
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Authentication [EHMS,JW]

Alice “How do I know 
you’re Alice”?

Solution #2: Store a hash of password
Problem: No Error Tolerance

H(     )Server

?=H(     )H(     )
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This Talk

Formal framework and new constructions 

for handling noisy key material

Provable Security
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Related Work

Basic set-up studied for quite a while, lots of nice ideas:

• Davida, Frankel, Matt ’98, Ellison, Hall, Milbert, Shneier ’00

First abstractions:

• Juels, Wattenberg ‘99, Frykholm, Juels ’01
– Handling noisy data in Hamming metric

• Juels, Sudan ’02
– Set difference metric 

Provable security:

• Linnartz, Tuyls ’03
– Provable security, specific distribution (multivariate Gaussian)



15

This Talk

Formal framework and new constructions 

for handling noisy key material

Provable Security
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Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication 

�Constructions for “set difference” distance

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data



17

Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication 

�Constructions for “set difference” distance

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data
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Secure Sketch

1. Error-correction: If x’ is “close” to x, then recover x

2. Secrecy: Given S(X), it’s hard to predict X

• Meaning of “close” depends on application

• Secrecy: loss of min-entropy

x S(x)S

Recover
x’

S(x) x
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Measuring Security

• X a random variable on {0,1}n

• Probability of predicting X = maxx Pr[X = x]

• There are various ways to measure entropy…

• Min-entropy:        H�(X) = -log (maxx Pr[X=x])
• Uniform on {0,1}n :   H�(Un) = n

• “ Password has min-entropy t ” means that adversary’s 

probability of guessing the password is 2-t

• Passwords had better have high entropy!



20

Measuring Security

• X a random variable on {0,1}n

• Probability of predicting X = maxx Pr[X = x]

• There are various ways to measure entropy…

• Min-entropy:        H�(X) = -log (maxx Pr[X=x])
• Conditional entropy

H�(X | Y ) = -log ( prob. of predicting X given Y )

= -log ( Expy { maxx Pr[X=x | Y=y] } )
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Secure Sketch

1. Error-correction: If x’ is “close” to x, then recover x

2. Secrecy: Given S(X), it’s hard to predict X

Goals: - Minimize entropy loss:   H�(X)  – H�(X | S(X) )

- Maximize tolerance: how “far” x’ can be from x

X S(X)S

Recover
x’

S(x) x
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Example: Code-Offset Construction

[BBR88, Cré97,…, JW02]
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Code-Offset Construction [BBR,Cré,JW]

• View password as n bit string : x � {0,1}n

• Error model: small number of flipped bits

• Hamming distance:  

dH(x,x’) = # of positions in which x, x’ differ

• Main idea: non-conventional use of standard 

error-correcting codes
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Code-Offset Construction [BBR,Cré,JW]

• Error-correcting code ECC: k bits � n bits

• Any two codewords differ by at least d bits

• S(x) = x � ECC(R)

where R is random string

Equiv: S(x) = syndrome(x) d
x

ECC(R)
S(x)

x’
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Recovery

• Error-correcting code ECC: k bits � n bits

• Any two codewords differ by at least d bits

• S(x) = x � ECC(R)

where R is random string

Equiv: S(x) = syndrome(x)

• Given S(x) and x’ close to x:
– Compute  x’ � S(x)
– Decode to get ECC(R)
– Compute x = S(x) � ECC(R)

d
x

ECC(R)
S(x)

x’

• Corrects d/2 errors
• How much entropy loss?
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Entropy Loss

• Error-correcting code ECC: k bits � n bits

• Any two codewords differ by at least d bits

• S(x) = x � ECC(R)

where R is random string

H�(X | S(X)) 

= H�(X, R | S(X) )

� H�(X) + H�(R) – |S(X)|

= H�(X)  + k – n

d
x

ECC(R)
S(x)

Revealing n bits
costs � n bits of entropy
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Entropy Loss

• Error-correcting code ECC: k bits � n bits

• Any two codewords differ by at least d bits

• S(x) = x � ECC(R)

where R is random string

H�(X | S(X)) 

= H�(X, R | S(X) )

� H�(X) + H�(R) – |S(X)|

= H�(X)  + k – n

Entropy loss  = n – k
= redundancy of code

d
x

ECC(R)
S(x)
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Using Sketches for Authentication

“How do I know 
you’re Alice”?

x’=

x =

S(x), Hash(x)

• Input to Hash should be uniformly random
• X is not uniform (especially given S(X)) 

Problem

Recover

Hash

?=

Alice Server
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Using Sketches for Authentication

“How do I know 
you’re Alice”?

x’=

x =

S(x), Hash(x)

Alice Server
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Padding via Random Functions

Alice Server x =

S(x), F, Hash(F(x))

Scramble input with “random” function F. Store F.
Solution

• 2-universal hash is sufficient (e.g. random linear map)

• (Any “strong extractor” also works)

• When is this secure? 

“How do I know 
you’re Alice”?

x’=
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Padding via Random Functions

Alice Server x =

S(x), F, Hash(F(x))

Scramble input with “random” function F. Store F.
Solution

• Secure as long as:
Entropy-LossS +  | Hash | + 2 log(1/ε) � H�(X)

• Proof idea:   S(x), F, Hash(F(x))  ���� S(x), F, Hash(R) 

• Similar to “left-over hash lemma / privacy amplification”

“How do I know 
you’re Alice”?

x’=
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Sketches and Authentication

• “Secure Sketch” + Hashing Solves Authentication

• “Hamming” errors can be handled with standard ECC

• Assumption: X has high entropy

– Necessary

– X could be several passwords taken together

• Similar techniques imply one can use X as key for 

many crypto applications (e.g. encryption)

– Covers several previously studied settings 
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Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication 

�“Set difference” distance

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data
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Why Set Difference? [EHMS,FJ,JS]

• Inputs:       

• Some representations of personal / biometric data:
– Fingerprints represented as feature list (minutiae/ridge meetings)

– List of favorite books

• X 	 {1,…, N},  #X = s

• dS(X,Y) = ½ # (X ∆ Y)
= Hamming distance
on vectors in {0,1}N.

X Y

X ∆ Y• Code-offset not good:
N-bit string is too long!

• Want: s log N bits
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Recall: Secure Sketch

1. Error-correction: If x’ is “close” to x, then

2. Secrecy: Given S(X), it’s hard to predict X

Goals: - Minimize entropy loss:   H�(X)  – H�(X | S(X) )

- Maximize tolerance: how “far” x’ can be from x

X S(X)S

Recover
x’

S(x) x
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New Constructions for Set Difference

• X 	 {1,…, N} ,  #X = s ,  dS(X,Y) = ½ # (X ∆ Y)

• Two constructions
1. punctured Reed-Solomon code

2. Sublinear-time decoding of BCH codes from syndromes

• Both constructions:
– As good as code-offset could be (� optimal)

– Storage space � (s + 1) log N
– Entropy loss 2 e log N to correct e errors
– Improve previous best [JS02] (+ analysis)

X
Y

X ∆ Y
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Reed-Solomon-based Sketch

X 	 {1,…, N} ,  #X = s ,  dS(X,Y) = ½ # (X ∆ Y)

Suppose N is prime, work in  ZN

1. k := s – 2 e – 1 

2. Pick random poly. P() of degree � k
3. P’() := monic degree s poly. s.t. P’(z)=P(z) 



 z ���� X
4. Output S(X)=P’

X

P

P’

s=7, e=2, k=2

1 2 N
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Reed-Solomon-based Sketch

X 	 {1,…, N} ,  #X = s ,  dS(X,Y) = ½ # (X ∆ Y)

Suppose N is prime, work in  ZN

1. k := s – 2 e – 1 

2. Pick random poly. P() of degree � k
3. P’() := monic degree s poly. s.t. P’(z)=P(z) 



 z ���� X
4. Output S(X)=P’

Recovery: Given P’ and X’ close to X
1. Reed-Solomon

decoding yields P
2. Intersections of

P and P’ yield X

P

P’

s=7, e=2, k=2

X’
1 2 N
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Reed-Solomon-based Sketch

X 	 {1,…, N} ,  #X = s ,  dS(X,Y) = ½ # (X ∆ Y)

Suppose N is prime, work in  ZN

1. k := s – 2 e – 1 

2. Pick random poly. P() of degree � k
3. P’() := monic degree s poly. s.t. P’(z)=P(z) 



 z ���� X
4. Output S(X)=P’
Entropy loss:

H�(X | P’) = H�(X,P | P’)   � H�(X) + H�(P) - |P’|
= H�(X) + (k+1)log N – s log N

= H�(X) – 2e log N
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Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication

�“Set difference” distance: Reed-Solomon construction

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data
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Other metrics?

• Real error models not as clean as Hamming & set diff.

• Algebraic techniques won’t apply directly.
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Other metrics?

• Real error models not as clean as Hamming & set diff.

• Algebraic techniques won’t apply directly.

• Possible Approaches:

1. Develop new scheme tailored to particular metric

2. Reduce to easier metric via embedding

ψ :  M1 � M2

x, y close � ψ(x), ψ(y) close 

x, y far � ψ(x), ψ(y) far

M1

M2

ψ
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Biometric embeddings

• Real error models not as clean as Hamming & set diff.

• Algebraic techniques won’t apply directly.

• Possible Approaches:

1. Develop new scheme tailored to particular metric

2. Reduce to easier metric via embedding

ψ :  M1 � M2

x, y close � ψ(x), ψ(y) close 

x, y far � ψ(x), ψ(y) far

M1

M2

ψ
A is a large set  � ψ(A) is large

H�(A) large � H�(ψ(A)) large
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Edit Distance (suggested by P. Indyk)

• Strings of bits

• d(x,y) = number of insertions & 

deletions to go from x to y

• Good standard embeddings into Hamming not known

• Shingling [Broder]:  “biometric” embedding into Set.Diff.

101010101010

10101101010

101011010101
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Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication

�“Set difference” distance: Reed-Solomon construction

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data

[DS03]
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Stronger Privacy?

• Previous notion: Unpredictability
– Can’t guess X even after seeing sketch

– Sufficient for using X as a crypto key

• What about the privacy of X itself?
– Do not want particular info about X leaked (say, first 20 bits)

• Ideal notion:

X almost independent of S(X)

• Problem: Some info must be leaked by S(X) (provably)

– Mutual information  I(X ; S(X)) is large

• We want the ensure that “useful” information is hidden
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Hiding All Functions ([CMR], à la [GM])

Definition: S(X) hides all functions of X if
For all functions g , for all adversaries A, � A’

Pr[ A(S1(X), S2(X), …) = g(X) ] – Pr[ A’() = g(X) ] < ε

Intuition:“A cannot guess g(X) given polynomially-many 
copies of  S(X)”

S1(X), S2(X),…X

g(X) difficult Implies 
unpredictability



48

Hiding All Functions ([CMR], à la [GM])

Definition: S(X) hides all functions of X if
For all functions g , for all adversaries A, � A’

Pr[ A(S1(X), S2(X), …) = g(X) ] – Pr[ A’() = g(X) ] < ε

• No known constructions satisfy this 
– (Some recent ideas by [vDW])

• Our results:
– Information-theoretically secure (vs computational)

– One use only
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One-time Security [CMR,RW]

Definition: S(X) hides all functions of X if
For all functions g , for all adversaries A, � A’

Pr[ A(S(X)) = g(X) ] – Pr[ A’() = g(X) ] < ε

S(X)X

g(X) diff
icu

lt
One copy of S(X)
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One-time Security [CMR,RW]

Definition: S(X) hides all functions of X if
For all functions g , for all adversaries A, � A’

Pr[ A(S(X)) = g(X) ] – Pr[ A’() = g(X) ] < ε

• Can be achieved in code-offset construction

– Use randomly chosen code from some family

S(x) = description of ECC, x � ECC(R)

– Need to keep decodability

– Exact parameters still unknown
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Technique: Equivalence to Extraction

Definition: S(X) hides all functions of X if
For all functions g , for all adversaries A, � A’

Pr[ A(S(X)) = g(X) ] – Pr[ A’() = g(X) ] < ε

S() is an “extractor” if for all r.v.’s X1, X2 of min-entropy t

S(X1) �ε S(X2)

Thm: S(X) hides all functions of X, whenever H�(X)� t
� S() is an “extractor” for r.v.’s of min-entropy t – 1
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Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication

�“Set difference” distance: Reed-Solomon construction

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data
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Conclusions

• Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

– Abstraction, simplicity allow comparing schemes

– Constructions for Hamming, Set Difference, Edit Metrics

– Progress towards strong privacy of data
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Conclusions

• Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

• New techniques for information-theoretic crypto

– Non-standard use of extractors

– Connections to coding theory, embeddings
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Conclusions

• Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

• New techniques for information-theoretic crypto

• Applications to other settings

– perfect one-way functions, 

– encryption of high-entropy messages [DS03], 

– bounded-storage crypto [DV04], 

– physically uncloneable functions [DLD04]
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Conclusions

• Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

• New techniques for information-theoretic crypto

• Applications to other settings 

• Future work

– Other “metrics”

– Stronger privacy (computational version a la [CMR98])

– Reusability
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Conclusions

• Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

• New techniques for information-theoretic crypto

• Applications to other settings 

• Future work

• Bigger Picture?
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Biometric “Security” Wide Open

• This talk: Storage

• Other vulnerabilities:

– Spoofing 

– Hardware must be secure

• Bigger threat to privacy comes from misuse/overuse

– Function creep (SSN)

– Not revocable

– Can they be kept secret even in principle?
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Questions?
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edit distance

• dis(x,y) = number of insertions & 

deletions to go from x to y

• E.g., typos in a passphrase

• Idea: convert to set difference via shingling [Broder]

• Map a string to a set of all its length-c substrings

x = Albuquerque-Massachusetts-Winnipesaukee
y = Albuqurque-Masachusetts-Winipessaukee

dis(x,y) = 4
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shingling for fuzzy extractors

• View string as set of shingles
• c-shingling

– each edit error gives c set errors
– entropy loss (n/c) log n, 

where n is input string length

• Optimize c
• If H ∞(W) =  Θ (n), 

can extract Θ (n) bits 
tolerating Θ(n / log2 n) errors

Albuq
lbuqu
buque
uquer
querq
uerqu
erque
rque-
que-M
ue-Ma
e-Mas
-Mass
Massa

Albuq
lbuqu
buqur
uqurq
qurqu
urque

rque-
que-M
ue-Ma
e-Mas
-Masa
Masac

x = Albuquerque-Massachusetts-Winnipesaukee
y = Albuqurque-Masachusetts-Winipessaukee

x y
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Other Slides
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The Problem: We’re Human
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Stuff I want to say

• generic framework

• general tools

• About authentication: interplay between computational 

assumptions and information-theoretic technique

• practical… may be implemented

• General context: provable security
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Biometric embeddings

ψ :  M1 � M2

We care about entropy: non-standard requirements

• x,y close  � ψ(x), ψ(y) close

• A is a large set  � ψ(A) is large

d1(x,y)

d2(ψ(x), ψ(y))
� α

# A
# ψ(A)

�β or, equivalently
H�(X)

H�(ψ(X))
�β
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Statistical Distinguishability

• Statistical Difference (L1): For distributions p0(x), p1(x):

SD(p0,p1) = ½ ����x | p0(x) – p1(x) |
• SD measures distinguishability: 

If b�{0,1}, x� pb then  

maxA | Pr[A(x)=b] – ½ | = ½ SD(p0,p1)

• (Notation: A �ε B if  SD(A,B)�ε)
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Statistical Distinguishability

• Two probability distributions p0(x), p1(x)

Sphinx:
1. Flips a fair coin
2. - Heads: Samples Z according to  p0

- Tails:   Samples Z according to p1
3. Shows Z to Greek Hero

Greek Hero: Guesses if coin was heads or tails.

Hero can wins with probability at least ½

Hero wins w. prob. ½ + εεεε � p0, p1 are εεεε-distinguishable
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Key Recovery [EHMS, FJ, JS]

www.Fingers2Keys.com

Generate

Recover
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Lemma

If

• F:{0,1}n � {0,1}N chosen from 2-wise indep. hash f’ly

(N can be arbitrarily large)

• h: {0,1}N � {0,1}k any function

• X, Y such that X � {0,1}n and H�(X|Y) � k + 2log(1/ε)

Then

Y, F, h(F(X)) �ε Y, F, h(R)  


