Generating Strong Keys from Noisy Data

Yevgeniy Dodis, New York U Leo Reyzin, Boston U Adam Smith, MIT

Using Noisy Data for Passwords

- Crypto moving beyond encryption / authentication
- Newer applications often poorly modeled
 - Ad hoc solutions
 - Get broken!
- Crypto Theory: models, proofs
- This talk: formal framework

– provably secure constructions

for using biometric data for authentication, key recovery

The Problem: We're Human

- Secure cryptographic keys: long, random strings
- Too hard to remember
- Keep copy under doormat?
- Use short, easy-to-remember password (PIN)?
 - easy to remember = easy to guess

Passwords You Won't Forget

• Personal Info

- Mom's maiden name, Date of birth
- Name of first pet, name of street where you grew up

• Biometrics

- Fingerprints
- Iris Scan
- Face recognition
- Hand Geometry
- Voice print
- Signature

Noise and human error

- Fingerprint is Variable
 - Finger orientation, cuts, scrapes
- Personal info subject to memory failures / format
 - Name of your first girl/boy friend:"Um... Catherine? Katharine? Kate? Sue?"
- Measured data will be "close" to original in some **metric** (application-dependent)

► Noise and human error

- Not Uniformly Random
- (Crypto keys should be random)
- Fingerprints are represented as list of features
 - All fingers look similar
- Distribution is unknown
 - Ivanov is rare last name... unless first name is Sergei

- ≻ Noise and human error
- ≻ Not Uniformly Random

Should Not Be Stored in the Clear

- Theft is easy, makes info useless
 - Customer service representatives learn
 Mom's maiden name, Social Security Number, ...
- Keys cannot be changed many times
 - 10 fingers, 2 eyes, 1 mother

- ≻ Noise and human error
- ≻ Not Uniformly Random
- ≻ Should Not Be Stored in the Clear

Example: Authentication

Authentication [EHMS,JW]

Solution #1: Store a copy on server Problem: Password in the Clear

Authentication [EHMS,JW]

Solution #2: Store a hash of password Problem: No Error Tolerance

This Talk

Formal framework and new constructions for handling noisy key material

Provable Security

Related Work

Basic set-up studied for quite a while, lots of nice ideas:

- Davida, Frankel, Matt '98, Ellison, Hall, Milbert, Shneier '00 First abstractions:
- Juels, Wattenberg '99, Frykholm, Juels '01
 - Handling noisy data in Hamming metric
- Juels, Sudan '02
 - Set difference metric

Provable security:

- Linnartz, Tuyls '03
 - Provable security, specific distribution (multivariate Gaussian)

This Talk

Formal framework and new constructions for handling noisy key material

Provable Security

Outline

Basic Setting: Password Authentication

□ Simple abstraction: Secure Sketch

- Example: Hamming distance
- Secure Sketch \Rightarrow Authentication

Constructions for "set difference" distance

Other schemes via metric embeddings: edit distance

Privacy for Stored Data

Outline

Basic Setting: Password Authentication

□ Simple abstraction: Secure Sketch

- Example: Hamming distance
- Secure Sketch \Rightarrow Authentication
- Constructions for "set difference" distance

Other schemes via metric embeddings: edit distance

Privacy for Stored Data

Secure Sketch

$$x \longrightarrow \mathbf{S} \longrightarrow \mathbf{S}(x)$$

1. Error-correction: If x' is "close" to x, then recover x

$$\begin{array}{c} x' \longrightarrow \\ S(x) \longrightarrow \end{array} \text{Recover} \longrightarrow x \end{array}$$

- **2.** Secrecy: Given S(X), it's hard to predict X
- Meaning of "close" depends on application
- Secrecy: loss of min-entropy

Measuring Security

- *X* a random variable on $\{0,1\}^n$
- Probability of predicting $X = \max_{x} \Pr[X = x]$
- There are various ways to measure entropy...
- **Min-entropy**: $H_{\infty}(X) = -\log(\max_{x} \Pr[X=x])$
- Uniform on $\{0,1\}^n$: $H_{\infty}(U_n) = n$
- "Password has min-entropy t" means that adversary's probability of guessing the password is 2^{-t}
- Passwords had better have high entropy!

Measuring Security

- *X* a random variable on $\{0,1\}^n$
- Probability of predicting $X = \max_{x} \Pr[X = x]$
- There are various ways to measure entropy...
- **Min-entropy**: $H_{\infty}(X) = -\log(\max_{x} \Pr[X=x])$
- Conditional entropy

 $H_{\infty}(X \mid Y) = -\log (\text{ prob. of predicting } X \text{ given } Y)$ $= -\log (\text{ Exp}_{y} \{ \max_{x} \Pr[X=x \mid Y=y] \})$

Secure Sketch

$$X \longrightarrow \mathbf{S} \longrightarrow \mathbf{S}(\mathbf{X})$$

1. Error-correction: If x' is "close" to x, then recover x

$$\begin{array}{c} x' \longrightarrow \\ S(x) \longrightarrow \end{array} \text{Recover} \longrightarrow x \end{array}$$

2. Secrecy: Given S(X), it's hard to predict X

Goals: - Minimize entropy loss: $H_{\infty}(X) - H_{\infty}(X | S(X))$ - Maximize tolerance: how "far" **x**' can be from **x**

Example: Code-Offset Construction [BBR88, Cré97,..., JW02]

Code-Offset Construction [BBR,Cré,JW]

- View password as *n* bit string : $\mathbf{x} \in \{0,1\}^n$
- Error model: small number of flipped bits
- Hamming distance:

 $d_{\rm H}(x,x') = \#$ of positions in which x, x' differ

• Main idea: non-conventional use of standard error-correcting codes

Code-Offset Construction [BBR,Cré,JW]

- Error-correcting code ECC: k bits $\rightarrow n$ bits
- Any two codewords differ by at least *d* bits
- $S(x) = x \oplus ECC(R)$ where *R* is random string Equiv: S(x) = syndrome(x)

Corrects *d*/2 errors
How much entropy loss?

- Error-correcting code ECC: k bits $\rightarrow n$ bits
- Any two codewords differ by at least *d* bits
- $S(x) = x \oplus ECC(R)$ where *R* is random string Equiv: S(x) = syndrome(x)
- Given S(x) and x' close to x:
 - Compute $x' \oplus S(x)$
 - Decode to get ECC(R)
 - Compute $\mathbf{x} = \mathbf{S}(\mathbf{x}) \oplus \text{ECC}(R)$

Revealing *n* bits costs $\leq n$ bits of entropy

- Error-correcting code ECC: k bits $\rightarrow n$ bits
- Any two codewords differ by at least *d* bits
- $S(x) = x \oplus ECC(R)$

where R is random string

 $H_{\infty}(X \mid \mathbf{S}(X))$

- $= H_{\infty}(X, R \mid \mathbf{S}(X))$
- $\geq H_{\infty}(X) + H_{\infty}(R) |\mathbf{S}(X)|$

 $=H_{\infty}(X) + k - n$

Entropy loss = n - k= redundancy of code

- Error-correcting code ECC/ k bits $\rightarrow n$ bits
- Any two codewords differ by at least d bits
- $S(x) = x \oplus ECC(R)$ where *R* is random string
- $H_{\infty}(X \mid \mathbf{S}(X))$
- $= H_{\infty}(X, R \mid \mathbf{S}(X))$ $\geq H_{\infty}(X) + H_{\infty}(R) - |\mathbf{S}(X)|$
- $=H_{\infty}(X) + k n$

Using Sketches for Authentication

Using Sketches for Authentication

Padding via Random Functions

- 2-universal hash is sufficient (e.g. random linear map)
- (Any "strong extractor" also works)
- When is this secure?

Padding via Random Functions

• Secure as long as:

Entropy-Loss_S + | Hash | + $2 \log(1/\epsilon) \le H_{\infty}(X)$

- Proof idea: S(x), F, Hash(F(x)) $\approx S(x)$, F, Hash(R)
- Similar to "left-over hash lemma / privacy amplification"

Sketches and Authentication

- "Secure Sketch" + Hashing Solves Authentication
- "Hamming" errors can be handled with standard ECC
- **Assumption**: *X* has high entropy
 - Necessary
 - *X* could be several passwords taken together
- Similar techniques imply one can use *X* as key for many crypto applications (e.g. encryption)
 - Covers several previously studied settings

Outline

Basic Setting: Password AuthenticationSimple abstraction: Secure Sketch

- Example: Hamming distance
- Secure Sketch \Rightarrow Authentication

□ "Set difference" distance

Other schemes via metric embeddings: edit distance

Privacy for Stored Data

Why Set Difference? [EHMS,FJ,JS]

- Inputs: tiny subsets in a HUGE universe
- Some representations of personal / biometric data:
 - Fingerprints represented as feature list (minutiae/ridge meetings)
 - List of favorite books
- $X \subseteq \{1, ..., N\}, \ \#X = s$
- $d_S(X,Y) = \frac{1}{2} \# (X \Delta Y)$ = Hamming distance on vectors in $\{0,1\}^N$.

Recall: Secure Sketch

$$X \longrightarrow \mathbf{S} \longrightarrow \mathbf{S}(\mathbf{X})$$

1. Error-correction: If x' is "close" to x, then

$$\begin{array}{c} x' \longrightarrow \\ \mathbf{S}(x) \longrightarrow \end{array} \text{Recover} \longrightarrow x$$

2. Secrecy: Given S(X), it's hard to predict X

Goals: - Minimize entropy loss: $H_{\infty}(X) - H_{\infty}(X | S(X))$ - Maximize tolerance: how "far" **x**' can be from **x**

New Constructions for Set Difference

- $X \subseteq \{1,...,N\}$, #X = S, $d_S(X,Y) = \frac{1}{2} \# (X \Delta Y)$
- Two constructions

1. punctured Reed-Solomon code

- 2. Sublinear-time decoding of BCH codes from syndromes
- Both constructions:
 - As good as code-offset could be (\approx optimal)
 - Storage space $\leq (s + 1) \log N$
 - Entropy loss $2 e \log N$ to correct e errors
 - Improve previous best [JS02] (+ analysis)

Reed-Solomon-based Sketch

 $X \subseteq \{1,...,N\}, \ \#X = S, \qquad d_S(X,Y) = \frac{1}{2} \ \# (X \Delta Y)$

Suppose N is prime, work in \mathbb{Z}_N

- 1. k := s 2 e 1
- 2. Pick random poly. P() of degree $\leq k$
- 3. **P'() :=** monic degree *s* poly. s.t. **P'(z)**= $P(z) \forall z \in X$
- 4. Output S(X)=P'

Reed-Solomon-based Sketch

 $X \subseteq \{1,\ldots,N\}, \ \#X = S, \qquad d_S(X,Y) = \frac{1}{2} \# (X \Delta Y)$

Suppose N is prime, work in \mathbb{Z}_N

- 1. k := s 2 e 1
- 2. Pick random poly. P() of degree $\leq k$
- 3. **P'() :=** monic degree *s* poly. s.t. $P'(z) = P(z) \quad \forall z \in X$
- 4. Output S(X)=P'

Recovery: Given *P*' and *X*' close to *X*

- 1. Reed-Solomon decoding yields *P*
- 2. Intersections of *P* and *P*' yield *X*

Reed-Solomon-based Sketch

 $X \subseteq \{1,...,N\}, \ \#X = S, \qquad d_S(X,Y) = \frac{1}{2} \ \#(X \Delta Y)$

Suppose N is prime, work in \mathbb{Z}_N

1. k := s - 2 e - 1

- 2. Pick random poly. P() of degree $\leq k$
- 3. P'() :=monic degree *s* poly. s.t. $P'(z) = P(z) \quad \forall z \in X$
- 4. Output S(X)=P'Entropy loss:

 $\begin{aligned} H_{\infty}(X \mid \mathbf{P'}) &= H_{\infty}(X, P \mid \mathbf{P'}) \\ &= H_{\infty}(X) + (k+1)\log N - s \log N \\ &= H_{\infty}(X) - 2e \log N \end{aligned}$

Outline

Basic Setting: Password AuthenticationSimple abstraction: Secure Sketch

- Example: Hamming distance
- Secure Sketch \Rightarrow Authentication

"Set difference" distance: Reed-Solomon construction

Other schemes via metric embeddings: edit distance

Privacy for Stored Data

Other metrics?

- Real error models not as clean as Hamming & set diff.
- Algebraic techniques won't apply directly.

Other metrics?

- Real error models not as clean as Hamming & set diff.
- Algebraic techniques won't apply directly.
- Possible Approaches:
 - 1. Develop new scheme tailored to particular metric
 - 2. Reduce to easier metric via embedding

 $\psi: \mathcal{M}_1 \to \mathcal{M}_2$ x, y close $\Rightarrow \psi(x), \psi(y)$ close x, y far $\Rightarrow \psi(x), \psi(y)$ far

Biometric embeddings

- Real error models not as clean as Hamming & set diff.
- Algebraic techniques won't apply directly.
- Possible Approaches:
 - 1. Develop new scheme tailored to particular metric
 - 2. Reduce to easier metric via embedding

 $\psi: \mathcal{M}_{1} \to \mathcal{M}_{2}$ $x, y \text{ close} \Rightarrow \psi(x), \psi(y) \text{ close}$ $A \text{ is a large set } \Rightarrow \psi(A) \text{ is large}$ $H_{\infty}(A) \text{ large } \Rightarrow H_{\infty}(\psi(A)) \text{ large}$

Edit Distance (suggested by P. Indyk)

- Strings of bits
- d(x,y) = number of insertions &
 deletions to go from x to y

- Good standard embeddings into Hamming not known
- Shingling [Broder]: "biometric" embedding into Set.Diff.

Outline

Basic Setting: Password AuthenticationSimple abstraction: Secure Sketch

- Example: Hamming distance
- Secure Sketch \Rightarrow Authentication

Set difference" distance: Reed-Solomon construction
Other schemes via metric embeddings: edit distance

Privacy for Stored Data

Stronger Privacy?

- Previous notion: Unpredictability
 - Can't guess X even after seeing sketch
 - Sufficient for using *X* as a crypto key
- What about the privacy of *X* itself?
 - Do not want particular info about X leaked (say, first 20 bits)
- Ideal notion:

X almost independent of S(X)

- **Problem**: Some info must be leaked by S(X) (provably)
 - Mutual information I(X; S(X)) is large
- We want the ensure that "useful" information is hidden

Hiding All Functions ([CMR], à la [GM])

Definition: S(X) hides all functions of X if

For all functions g, for all adversaries A, $\exists A'$

 $\Pr[A(S_{1}(X), S_{2}(X), ...) = g(X)] - \Pr[A'() = g(X)] < \mathcal{E}$

Intuition: "A cannot guess g(X) given polynomially-many copies of S(X)"

Hiding All Functions ([CMR], à la [GM])

Definition: S(X) hides all functions of X if

For all functions g, for all adversaries A, $\exists A'$

 $\Pr[A(\mathbf{S}_{1}(X), \mathbf{S}_{2}(X), ...) = g(X)] - \Pr[A'() = g(X)] < \mathcal{E}$

- No known constructions satisfy this
 - (Some recent ideas by [vDW])
- Our results:
 - Information-theoretically secure (vs computational)
 - One use only

One-time Security [CMR,RW]

Definition: S(X) hides all functions of X if

One copy of S(X)

For all functions g, for all adversaries A, $\exists A'$

 $\Pr[A(\mathbf{S}(\mathbf{X})) = g(\mathbf{X})] - \Pr[A'() = g(\mathbf{X})] < \mathcal{E}$

 $\begin{array}{c} X \longrightarrow S(X) \\ \downarrow \\ g(X) & \text{difficult} \end{array}$

One-time Security [CMR,RW]

Definition: S(X) hides all functions of X if For all functions g, for all adversaries A, $\exists A'$ $\Pr[A(S(X)) = g(X)] - \Pr[A'() = g(X)] < \mathcal{E}$

- Can be achieved in code-offset construction
 - Use randomly chosen code from some family

S(x) = description of ECC, $x \oplus$ ECC(R)

- Need to keep decodability
- Exact parameters still unknown

Technique: Equivalence to Extraction

Definition: S(X) hides all functions of X if

For all functions g, for all adversaries A, $\exists A'$

 $\Pr[A(\mathbf{S}(\mathbf{X})) = g(\mathbf{X})] - \Pr[A'() = g(\mathbf{X})] < \mathcal{E}$

S() is an "extractor" if for all r.v.'s X_1, X_2 of min-entropy t $S(X_1) \approx_{\epsilon} S(X_2)$

Thm: S(X) hides all functions of X, whenever $H_{\infty}(X) \ge t$ $\Leftrightarrow S()$ is an "extractor" for r.v.'s of min-entropy t - 1

Outline

Basic Setting: Password AuthenticationSimple abstraction: Secure Sketch

- Example: Hamming distance
- Secure Sketch \Rightarrow Authentication

"Set difference" distance: Reed-Solomon construction
Other schemes via metric embeddings: edit distance
Privacy for Stored Data

- Generic framework for turning noisy, non-uniform data into secure cryptographic keys
 - Abstraction, simplicity allow comparing schemes
 - Constructions for Hamming, Set Difference, Edit Metrics
 - Progress towards strong privacy of data

- Generic framework for turning noisy, non-uniform data into secure cryptographic keys
- New techniques for information-theoretic crypto
 - Non-standard use of extractors
 - Connections to coding theory, embeddings

- Generic framework for turning noisy, non-uniform data into secure cryptographic keys
- New techniques for information-theoretic crypto
- Applications to other settings
 - perfect one-way functions,
 - encryption of high-entropy messages [DS03],
 - bounded-storage crypto [DV04],
 - physically uncloneable functions [DLD04]

- Generic framework for turning noisy, non-uniform data into secure cryptographic keys
- New techniques for information-theoretic crypto
- Applications to other settings
- Future work
 - Other "metrics"
 - Stronger privacy (computational version a la [CMR98])
 - Reusability

- Generic framework for turning noisy, non-uniform data into secure cryptographic keys
- New techniques for information-theoretic crypto
- Applications to other settings
- Future work
- Bigger Picture?

Biometric "Security" Wide Open

- This talk: Storage
- Other vulnerabilities:
 - Spoofing
 - Hardware must be secure
- Bigger threat to privacy comes from misuse/overuse
 - Function creep (SSN)
 - Not revocable
 - Can they be kept secret even in principle?

Questions?

edit distance

• dis(x,y) = number of insertions &

deletions to go from *x* to *y*

• E.g., typos in a passphrase

x = Albuquerque-Massachusetts-Winnipesaukeey = Albuqurque-Masachusetts-Winipessaukee

 $\operatorname{dis}(x,y) = 4$

- Idea: convert to set difference via shingling [Broder]
- Map a string to a set of all its length-c substrings

shingling for fuzzy extractors

		\mathcal{A}	у
•	View string as set of shingles	Albuq	Albuq
		lbuqu	lbuqu
•	<i>c</i> -shingling	buque	buqur
	– each edit error gives c set errors	uquer	uqurq
	$-$ entropy loss $(n/c) \log n$	querq	qurqu
	where <i>n</i> is input string length	uerqu	urque
	where <i>n</i> is input string tength	erque	
•	Optimize <i>c</i>	rque-	rque-
•	If H $(W) = \Theta(n)$	que-M	que-M
	$\prod_{\infty} (m) = O(m),$	ue-Ma	ue-Ma
	call extract $\Theta(n)$ bits	e-Mas	e-Mas
	tolerating $\Theta(n / \log^2 n)$ errors	-Mass	-Masa
		Massa	Masac

x = Albuquerque-Massachusetts-Winnipesaukeey = Albuqurque-Masachusetts-Winipessaukee

Other Slides

The Problem: We're Human

"Humans are incapable of securely storing high-quality cryptographic keys, and they have unacceptable speed when performing cryptographic operations. (They are also large, expensive to maintain, difficult to manage, and they pollute the environment. [...] But they are sufficiently pervasive that we must design our protocols around their limitations.)"

From Network Security by Kaufman, Perlman and Speciner.

Stuff I want to say

- generic framework
- general tools
- About authentication: interplay between computational assumptions and information-theoretic technique
- practical... may be implemented
- General context: provable security

*Bio*metric embeddings

$$\boldsymbol{\psi}: \ \mathcal{M}_1 \to \mathcal{M}_2$$

We care about entropy: non-standard requirements

x, y close $\Rightarrow \psi(x), \psi(y)$ close $\frac{d_1(\mathbf{x},\mathbf{y})}{d_2(\boldsymbol{\psi}(\mathbf{x}),\,\boldsymbol{\psi}(\mathbf{y}))} \leq \alpha$

• A is a large set $\Rightarrow \psi(A)$ is large

$$\frac{\#A}{\#\psi(A)} \ge \beta \quad \text{or, equivalently}$$

$$\frac{H_{\infty}(\mathbf{X})}{H_{\infty}(\mathbf{\psi}(\mathbf{X}))} \ge \beta$$

Statistical Distinguishability

• Statistical Difference (L_1) : For distributions $p_0(x)$, $p_1(x)$:

$$SD(p_0, p_1) = \frac{1}{2} \sum_x |p_0(x) - p_1(x)|$$

• SD measures distinguishability: If $b \leftarrow \{0,1\}, x \leftarrow p_b$ then $\max_A |\Pr[A(x)=b] - \frac{1}{2}| = \frac{1}{2} SD(p_0,p_1)$

• (Notation: $A \approx_{\varepsilon} B$ if $SD(A,B) \leq \varepsilon$)

Statistical Distinguishability

• Two probability distributions $p_0(x)$, $p_1(x)$

Sphinx:

- 1. Flips a fair coin
- 2. Heads: Samples Z according to p_0
 - Tails: Samples Z according to p_1
- 3. Shows Z to Greek Hero

Greek Hero: Guesses if coin was heads or tails.

Hero can wins with probability at least $\frac{1}{2}$

Here wins w. prob. $\frac{1}{2} + \epsilon \implies p_0, p_1$ are ϵ -distinguishable

Key Recovery [EHMS, FJ, JS]

www.Fingers2Keys.com

Lemma

If

- *F*:{0,1}ⁿ → {0,1}^N chosen from 2-wise indep. hash f'ly
 (*N* can be arbitrarily large)
- $h: \{0,1\}^N \to \{0,1\}^k$ any function
- *X*, *Y* such that $X \in \{0,1\}^n$ and $H_{\infty}(X|Y) \ge k + 2\log(1/\epsilon)$ Then

$$Y, F, h(F(X)) \approx_{\varepsilon} Y, F, h(R)$$