Generating Strong Keys from Noisy Data

Yevgeniy Dodis, New York U
Leo Reyzin, Boston U
Adam Smith, MIT

Using Noisy Data for Passwords

e Crypto moving beyond encryption / authentication

e Newer applications often poorly modeled

— Ad hoc solutions

— Get broken!
e Crypto Theory: models, proofs

e This talk:— formal framework
— provably secure constructions

for using biometric data for authentication, key recovery

The Problem: We’re Human

e Secure cryptographic keys: long, random strings
e Too hard to remember
e Keep copy under doormat?

e Use short, easy-to-remember password (PIN)?

— easy to remember = easy to guess

Passwords You Won’t Forget

 Personal Info
— Mom’s maiden name, Date of birth

— Name of first pet, name of street where you grew up

e Biometrics

— Fingerprints

— Iris Scan

— Face recognition

— Hand Geometry

— Voice print

— Signature

Issues with Personal Info / Biometrics

> Noise and human error

e Fingerprint is Variable
— Finger orientation, cuts, scrapes

e Personal info subject to memory failures / format

— Name of your first girl/boy friend:
“Um... Catherine? Katharine? Kate? Sue?”

 Measured data will be ““close” to original
in some metric (application-dependent)

Issues with Personal Info / Biometrics

> Noise and human error

» Not Uniformly Random

e (Crypto keys should be random)
e Fingerprints are represented as list of features

— All fingers look similar

e Distribution 1s unknown

— Ivanov 1s rare last name... unless first name is Sergei

Issues with Personal Info / Biometrics

> Noise and human error

» Not Uniformly Random

» Should Not Be Stored in the Clear

e Theft 1s easy, makes info useless

— Customer service representatives learn
Mom’s maiden name, Social Security Number, ...

e Keys cannot be changed many times

— 10 fingers, 2 eyes, 1 mother

Issues with Personal Info / Biometrics

Do we want to use
this stuff as a
password?

Issues with Personal Info / Biometrics

» Noise and human error
» Not Uniformly Random
» Should Not Be Stored in the Clear

How can we use

this stuff as a
password’?

Example: Authentication

Authentication [EHMS,JW]

Alice Server

“How do I know
you’'re Alice™?

Solution #1: Store a copy on server

Problem: Password 1n the Clear

Authentication [EHMS,JW]

“How do I know
you’'re Alice”?

g
,.-& 5
[) b
o7 SEEE TR
ff,"—'/ o ‘\.\
i /f N
R
S .
A
S
)
A e

Solution #2: Store a hash of password

Problem: No Error Tolerance

This Talk

Formal framework and new constructions

for handling noisy key material

Provable Security

Related Work

Basic set-up studied for quite a while, lots of nice ideas:
 Davida, Frankel, Matt 98, Ellison, Hall, Milbert, Shneier 00
First abstractions:

e Juels, Wattenberg ‘99, Frykholm, Juels "01

— Handling noisy data in Hamming metric

e Juels, Sudan 02

— Set difference metric
Provable security:
e Linnartz, Tuyls 03

— Provable security, specific distribution (multivariate Gaussian)

14

This Talk

Formal framework and new constructions

for handling noisy key material

Provable Security

Outline

%Basic Setting: Password Authentication

d Simple abstraction: Secure Sketch

e Example: Hamming distance

e Secure Sketch = Authentication
J Constructions for “set difference’ distance
 Other schemes via metric embeddings: edit distance

U Privacy for Stored Data

16

Outline

%Basic Setting: Password Authentication

1 Simple abstraction: Secure Sketch

e Example: Hamming distance

e Secure Sketch = Authentication
J Constructions for “set difference’ distance
 Other schemes via metric embeddings: edit distance

U Privacy for Stored Data

17

Secure Sketch

« — il S®

. Error-correction: If x’° 1s “close’ to x, then recover X

..

. Secrecy: Given S(X), 1t’s hard to predict X

Meaning of “close” depends on application

Secrecy: loss of min-entropy

Measuring Security

X arandom variable on {0,1}” / . N

Probability of predicting X = max, Pr[X = x]

There are various ways to measure entropy...

Min-entropy: H_(X) =-log (maxx Pr[X=x])

Uniformon {0,1}": H_(U,) =n

“ Password has min-entropy 7 ”” means that adversary’s

probability of guessing the password is 27

Passwords had better have high entropy!

Measuring Security

e X arandom variable on {0,1 }" K’ _____:_

e Probability of predicting X = max, Pr[X = x]

e There are various ways to measure entropy...

e Min-entropy: H_(X) =-log (maxx Pr[X=x])

e Conditional entropy

H_(X1Y) =-log(prob. of predicting X given Y")

= -log (Expy { max Pr[X=x | Y=y] })

Secure Sketch

x — i S

1. Error-correction: If X’ is “close” to X, then recover X

..

2. Secrecy: Given S(X), it’s hard to predict X

Goals: - Minimize entropy loss: H_(X) — H_(X1S(X))

- Maximize tolerance: how “far’” X’ can be from Xx

Example: Code-Offset Construction
|BBR3S, Cre97,..., JIW02]

Code-Offset Construction [BBR,Cré,JW]

View password as 7 bit string : x € {0,1}"
Error model: small number of flipped bits
Hamming distance:

dy(Xx,x’) = # of positions in which x, x’ differ

Main 1dea: non-conventional use of standard

error-correcting codes

Code-Offset Construction [BBR,Cré,JW]

e Error-correcting code ECC: k bits — n bits

* Any two codewords differ by at least d bits

e S(x)=Xx & ECC(R)
where R 1s random string

Equiv: $(X) = syndrome(X)

Error-correcting code ECC: k bits — n bits

Any two codewords differ by at least d bits
SX)=x & ECC(R)
where R 1s random string

Equiv: $(X) = syndrome(x)

Given S(x) and X’ close to Xx:

— Compute| X’ & S(x)
— Decode to get ECC(R)
— Compute X = S(x) & ECC(R)

e Error-correcting code ECC:|k bits — n bits

e Any two codewords differ l#)y at least d bits
e S(x)=Xx & ECC(R)

where R is random string

H_(X1S8(X)) o>
=H X.RISX)) | e
> H (X)+H_ (R)-ISX)l 4
=H (X) +k—n

e Error-correcting code ECC/ k bits — n bits

e Any two codewords diffef by at least d bits
e S(x)=Xx & ECC(R)

where R is random strjng

H_(X1S8(X)) o>
=H_(X, R1S(X) .
> H (X)+H_ (R)-ISXOl 4
=H (X) +k—n

Using Sketches for Authentication

. “How do I know
Alice - Server

Problem

e Input to Hash should be uniformly random
e X 1s not uniform (especially given S(X))

Using Sketches for Authentication

. “How do I know
Alice - Server

Padding via Random Functions

. “How do I know
Alice - Server

» A

Scramble input with “random” function F. Store F.

e 2-universal hash 1s sufficient (e.g. random linear map)
e (Any “‘strong extractor” also works)

* When 1s this secure?

30

Padding via Random Functions

. “How do I know
Alice - Server .

S(x). F, Hash(F(x))

Scramble input with “random” function F. Store F.

e Secure as long as:

Entropy-Lossg + | Hash | + 2 log(1/e) < H_(X)
e Proof idea: S(x), F, Hash(F(x)) =~ S(x), F, Hash(R)

e Similar to “left-over hash lemma / privacy amplification”

Sketches and Authentication

“Secure Sketch” + Hashing Solves Authentication
“Hamming” errors can be handled with standard ECC

Assumption: X has high entropy
— Necessary

— X could be several passwords taken together

Similar techniques imply one can use X as key for
many crypto applications (e.g. encryption)

— Covers several previously studied settings

Outline

%Basic Setting: Password Authentication
%Simple abstraction: Secure Sketch

e Example: Hamming distance

e Secure Sketch = Authentication

L “Set difference” distance

 Other schemes via metric embeddings: edit distance

U Privacy for Stored Data

33

Why Set Ditterence? [EHMS,FJ,JS]

o Inputs: tiny subsets in a HUGE universe

e Some representations of personal / biometric data:

— Fingerprints represented as feature list (minutiae/ridge meetings)

— List of favorite books

e XCI{l1,...N), #X =5 X Y
c d(X,Y)=1%#(XAY) Q}

= Hamming distance |* Code-offset not good:
on vectors in {0,1}". N-bit string 1s too long!
e Want: s log N bits

Recall: Secure Sketch

x — i S

1. Error-correction: If X’ is “close” to x, then

..

2. Secrecy: Given S(X), it’s hard to predict X

Goals: - Minimize entropy loss: H_(X) — H_(X1S(X))

- Maximize tolerance: how ‘“far’” x’ can be from Xx

New Constructions for Set Difference

e XC{L..,N},#X =5, d(X,Y)="%#XAY)

e Two constructions XQ’/D Y

XAY

1. punctured Reed-Solomon code

2. Sublinear-time decoding of BCH codes from syndromes
e Both constructions:

— As good as code-offset could be (/= optimal)

— Storage space < (S + 1) log N

— Entropy loss 2 e log N to correct € errors
— Improve previous best [JSO2] (+ analysis)

XC{l,.,N}, #X =s,

Reed-Solomon-based Sketch

Suppose N is prime, work in Z

.

2
3.
4

ki=s-2e —1
Pick random poly. P() of degree < k

d(X,Y)=2#(XAY)

P’() := monic degree s poly. s.t. P’(2)=P(Z) Vz € X

Output S(X)=P’

s=7 e=2, k=2

Reed-Solomon-based Sketch

XC{l..,N},#X =s, dyX,Y)=%#XAY)
Suppose N is prime, work in Z

1. ki=s-2e —1

2. Pick random poly. P() of degree < k

3. P’() :=monic degree s poly. s.t. P’(2)=P(Z) Vz € X
4. Output S(X)=P’

s=7 e=2, k=2

Recovery: Given P’ and X’ close to X

I. Reed-Solomon P
decoding yields P

2. Intersections of P’
P and P’ yield X

38

Reed-Solomon-based Sketch

XC{l..,N},#X =s, dyX,Y)=%#XAY)
Suppose N is prime, work in Z

1. ki=s-2e —1

2. Pick random poly. P() of degree < k

3. P’() :=monic degree s poly. s.t. P’(2)=P(Z) Vz € X
4. Output S(X)=P’
Entropy loss:

H XIP)=H_X,PIP) >H_(X)+H_P)-I|PI
=H_(X) + (k+1)log N - s log N
=H_(X)-2elogN

Outline

%Basic Setting: Password Authentication
%Simple abstraction: Secure Sketch

e Example: Hamming distance

e Secure Sketch = Authentication

%“Set difference” distance: Reed-Solomon construction

 Other schemes via metric embeddings: edit distance

U Privacy for Stored Data

40

Other metrics?

Real error models not as clean as Hamming & set diff.

Algebraic techniques won’t apply directly.

QO M m O N

Rolled Ink Latent Print

Finger #7 Rear View Mirror

41

Other metrics?

Real error models not as clean as Hamming & set diff.
Algebraic techniques won’t apply directly.

Possible Approaches:

1. Develop new scheme tailored to particular metric A

. .. . 1
2. Reduce to easier metric via embedding

v M — M, W
X, y close = uUXx), UY) close M
2
X, y far = mx), Uy) tar

Biometric embeddings

Real error models not as clean as Hamming & set diff.
Algebraic techniques won’t apply directly.

Possible Approaches:

1. Develop new scheme tailored to particular metric A

. .. . 1
2. Reduce to easier metric via embedding

i My — M, W
X, y close = uUXx), UY) close M
2

A 1s a large set = W(A) 1s large

H_(A) large = H_(W/(A)) large

Edit Distance (suggested by P. Indyk)

e Strings of bits

* d(X,y) = number of insertions &

deletions to go from x to y

10101101010
101011010101

10101}(101010%

e (Good standard embeddings into Hamming not known

e Shingling [Broder]: “biometric” embedding into Set.Dift.

Outline

%Basic Setting: Password Authentication
%Simple abstraction: Secure Sketch

e Example: Hamming distance

e Secure Sketch = Authentication
%“Set difference” distance: Reed-Solomon construction

Other schemes via metric embeddings: edit distance

Privacy for Stored Data

|DS03]

45

Stronger Privacy?

Previous notion: Unpredictability
— Can’t guess X even after seeing sketch

— Sufficient for using X as a crypto key

What about the privacy of X itselt?
— Do not want particular info about X leaked (say, first 20 bits)

Ideal notion:
X almost independent of S(X)
Problem: Some info must be leaked by S(X) (provably)
— Mutual information I(X ; $(X)) 1s large

We want the ensure that “useful’” information is hidden

46

Hiding All Functions ([CMR], a la [GM])

Definition: S(X) hides all functions of X if

For all functions g , for all adversaries A, 4 A’

Pr A(S,(X), $,0, ..) =g 1-Pr[A0 =g 1 <

Intuition: “A cannot guess g(X) ¢ polynomially-many

copies of S(X)”

Implies
unpredictability

Hiding All Functions ([CMR], a la [GM])

Definition: S(X) hides all functions of X if

For all functions g , for all adversaries A, 4 A’

Pr[A(S,(X), $,(X), ..)=gX) | -P{ A0 =gX)] < €

e No known constructions satisfy this
— (Some recent 1deas by [vDW])

e QOur results:
— Information-theoretically secure (vs computational)

— One use only

One-time Security [CMR,RW]

Definition: S(X) hides all functions of X if

For all functions g , for all adversaries A, 4 A’

Prl A(S(X)) =g(X) | -Pr[A’ =gX) | < €

One-time Security [CMR,RW]

Definition: S(X) hides all functions of X if

For all functions g , for all adversaries A, 4 A’

Prl AS(X)) =g(X) | -Pr[A’ =gX) | < €

e (Can be achieved in code-offset construction
— Use randomly chosen code from some family

S() = description of ECC, x & ECC(R)
— Need to keep decodability

— Exact parameters still unknown

Technique: Equivalence to Extraction

Definition: S(X) hides all functions of X if

For all functions g , for all adversaries A, 4 A’

Prl A(S(X)) =g(X) | -Pr[A’ =gX) | < €

S() 1s an “extractor” if for all r.v.”s X, X, of min-entropy £

5(X ;) ~ S(X,)

Thm: S(X) hides all functions of X, whenever H__(X)> ¢

&< 8() 1s an “extractor” for r.v.’s of min-entropy f — 1

Outline

%Basic Setting: Password Authentication
%Simple abstraction: Secure Sketch

e Example: Hamming distance

e Secure Sketch = Authentication
%“Set difference” distance: Reed-Solomon construction

Other schemes via metric embeddings: edit distance

%Privacy for Stored Data

52

Conclusions

Conclusions

e Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

Conclusions

e (Generic framework for turning noisy, non-uniform

data 1nto secure cryptographic keys

* New techniques for information-theoretic crypto

e Applications to other settings

— perfect one-way functions,

— encryption of high-entropy messages [DS03],
— bounded-storage crypto [DV04],

— physically uncloneable functions [DLD04]

55

Conclusions

e (Generic framework for turning noisy, non-uniform

data 1nto secure cryptographic keys
* New techniques for information-theoretic crypto

e Applications to other settings

e Future work

— Other “metrics”
— Stronger privacy (computational version a la [CMR98])

— Reusability

56

Conclusions

Generic framework for turning noisy, non-uniform

data 1nto secure cryptographic keys
New techniques for information-theoretic crypto
Applications to other settings

Future work

Bigger Picture?

Biometric “Security” Wide Open

e This talk: Storage

e QOther vulnerabilities:
— Spoofing
— Hardware must be secure

e Bigger threat to privacy comes from misuse/overuse
— Function creep (SSN)

— Not revocable

— Can they be kept secret even in principle?

58

Questions’?

edit distance

e dis(x,y) = number of insertions &

deletions to go from x to y
e E.g., typos in a passphrase

X = Albuquerque—-Massachusetts-Winnipesaukee
Yy =Albugqurque—Masachusetts-WinipesBaukee

dis(x,y) =4

e Idea: convert to set difference via shingling [Broder]

e Map a string to a set of all its length-c substrings

60

shingling for fuzzy extractors
. e

View string as set of shingles
c-shingling
— each edit error gives c set errors

— entropy loss (n/c) log n,
where n 1s input string length

Optimize ¢

ItH_ (W)= 0 (n),

can extract ® (n) bits
tolerating ®(n / log? n) errors

Albug
lbuqu
buque
uquer
querg
uerqu
erque
rgue-—
que—M
ue—Ma
e—Mas
—Mass
Massa

Albug
lbuqu
buqur
ugqurqg
qurqu
urque

rque-—
que—M
ue—Ma
e—Mas
—Masa
Masac

X = Albuquerque—Massachusetts—-Winnipesaukee
Y = Albuqurque—Masachusetts-WinipesBaukee

61

Other Slides

The Problem: We’re Human

“Humans are incapable of securely storing high-quality
cryptographic keys, and they have unacceptable speed
when performing cryptographic operations. (They are also
large, expensive to maintain, difficult to manage, and they
pollute the environment. [...] But they are sufficiently
pervasive that we must design our protocols around their
limitations.)”

From Network Security by Kaufman, Perlman and Speciner.

63

Stuff I want to say

generic framework
general tools

About authentication: interplay between computational

assumptions and information-theoretic technique
practical... may be implemented

General context: provable security

Biometric embeddings

yi M — M,

We care about entropy: non-standard requirements

e x,yclose = wUx), Iy) close

d,(x,y) < g
d,(x), Uy))

e Aisalarge set = U(A)1s large

#A H
> [or, equivalently () > p

UA) H, (X))

Statistical Distinguishability

 Statistical Difference (L,): For distributions p,(x), p,;(x):

SD(pyp;) =2 Zx |p0(x) - Ppi(x) |

e SD measures distinguishability:
It b<—{0,1}, x <— p, then

max , | Pr[A(x)=b] — Y2 | = Y4 SD(p,.p,)

e (Notation: A ~_. B if SD(A,B)<¢)

Statistical Distinguishability

 Two probability distributions p,(x), p,;(x)

Sphinx:
1. Flips a fair coin

2. - Heads: Samples Z according to p,
- Tails: Samples Z according to p,

3. Shows Z to Greek Hero

Greek Hero: Guesses if coin was heads or tails.

Hero can wins with probability at least %2

Hero wins w. prob. Y2+ € = p,, p, are €-distinguishable

Key Recovery [EHMS, FJ, JS]

WWW.FingeI‘SZKeyS.com

68

LLemma

It

e F:{0,1}" — {0,1}" chosen from 2-wise indep. hash f’ly
(N can be arbitrarily large)

e h:{0,1}¥ — {0,1}* any function

* X, Ysuchthat X € {0,1}" and H__(XIY) > k + 2log(1/¢e)

Then

Y, F, h(F(X)) ~, Y, F, h(R)

