
1

Generating Strong Keys from Noisy Data

Yevgeniy Dodis, New York U

Leo Reyzin, Boston U

Adam Smith, MIT

2

Using Noisy Data for Passwords

• Crypto moving beyond encryption / authentication

• Newer applications often poorly modeled

– Ad hoc solutions

– Get broken!

• Crypto Theory: models, proofs

• This talk:– formal framework

– provably secure constructions

for using biometric data for authentication, key recovery

3

The Problem: We’re Human

• Secure cryptographic keys: long, random strings

• Too hard to remember

• Keep copy under doormat?

• Use short, easy-to-remember password (PIN)?

– easy to remember = easy to guess

4

Passwords You Won’t Forget

• Personal Info
– Mom’s maiden name, Date of birth

– Name of first pet, name of street where you grew up

• Biometrics
– Fingerprints

– Iris Scan

– Face recognition

– Hand Geometry

– Voice print

– Signature
?=

5

Issues with Personal Info / Biometrics

�Noise and human error

�Not Uniformly Random

� Should Not Be Stored in the Clear
• Fingerprint is Variable

– Finger orientation, cuts, scrapes

• Personal info subject to memory failures / format
– Name of your first girl/boy friend:

“Um… Catherine? Katharine? Kate? Sue?”

• Measured data will be “close” to original
in some metric (application-dependent)

6

Issues with Personal Info / Biometrics

�Noise and human error

�Not Uniformly Random

� Should Not Be Stored in the Clear• (Crypto keys should be random)

• Fingerprints are represented as list of features
– All fingers look similar

• Distribution is unknown
– Ivanov is rare last name… unless first name is Sergei

7

Issues with Personal Info / Biometrics

�Noise and human error

�Not Uniformly Random

� Should Not Be Stored in the Clear

�Li1mited Changes Possible• Theft is easy, makes info useless
– Customer service representatives learn

Mom’s maiden name, Social Security Number, …

• Keys cannot be changed many times
– 10 fingers, 2 eyes, 1 mother

8

Issues with Personal Info / Biometrics

�Noise and human error

�Not Uniformly Random

� Should Not Be Stored in the Clear

How can we use
this stuff as a

password?

Do we want to use
this stuff as a

password?

9

Issues with Personal Info / Biometrics

�Noise and human error

�Not Uniformly Random

� Should Not Be Stored in the Clear

How can we use
this stuff as a

password?

10

Example: Authentication

11

Authentication [EHMS,JW]

Alice Server“How do I know
you’re Alice”?

Solution #1: Store a copy on server
Problem: Password in the Clear

?
�

12

Authentication [EHMS,JW]

Alice “How do I know
you’re Alice”?

Solution #2: Store a hash of password
Problem: No Error Tolerance

H()Server

?=H()H()

13

This Talk

Formal framework and new constructions

for handling noisy key material

Provable Security

14

Related Work

Basic set-up studied for quite a while, lots of nice ideas:

• Davida, Frankel, Matt ’98, Ellison, Hall, Milbert, Shneier ’00

First abstractions:

• Juels, Wattenberg ‘99, Frykholm, Juels ’01
– Handling noisy data in Hamming metric

• Juels, Sudan ’02
– Set difference metric

Provable security:

• Linnartz, Tuyls ’03
– Provable security, specific distribution (multivariate Gaussian)

15

This Talk

Formal framework and new constructions

for handling noisy key material

Provable Security

16

Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication

�Constructions for “set difference” distance

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data

17

Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication

�Constructions for “set difference” distance

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data

18

Secure Sketch

1. Error-correction: If x’ is “close” to x, then recover x

2. Secrecy: Given S(X), it’s hard to predict X

• Meaning of “close” depends on application

• Secrecy: loss of min-entropy

x S(x)S

Recover
x’

S(x) x

19

Measuring Security

• X a random variable on {0,1}n

• Probability of predicting X = maxx Pr[X = x]

• There are various ways to measure entropy…

• Min-entropy: H�(X) = -log (maxx Pr[X=x])
• Uniform on {0,1}n : H�(Un) = n

• “ Password has min-entropy t ” means that adversary’s

probability of guessing the password is 2-t

• Passwords had better have high entropy!

20

Measuring Security

• X a random variable on {0,1}n

• Probability of predicting X = maxx Pr[X = x]

• There are various ways to measure entropy…

• Min-entropy: H�(X) = -log (maxx Pr[X=x])
• Conditional entropy

H�(X | Y) = -log (prob. of predicting X given Y)

= -log (Expy { maxx Pr[X=x | Y=y] })

21

Secure Sketch

1. Error-correction: If x’ is “close” to x, then recover x

2. Secrecy: Given S(X), it’s hard to predict X

Goals: - Minimize entropy loss: H�(X) – H�(X | S(X))

- Maximize tolerance: how “far” x’ can be from x

X S(X)S

Recover
x’

S(x) x

22

Example: Code-Offset Construction

[BBR88, Cré97,…, JW02]

23

Code-Offset Construction [BBR,Cré,JW]

• View password as n bit string : x � {0,1}n

• Error model: small number of flipped bits

• Hamming distance:

dH(x,x’) = # of positions in which x, x’ differ

• Main idea: non-conventional use of standard

error-correcting codes

24

Code-Offset Construction [BBR,Cré,JW]

• Error-correcting code ECC: k bits � n bits

• Any two codewords differ by at least d bits

• S(x) = x � ECC(R)

where R is random string

Equiv: S(x) = syndrome(x) d
x

ECC(R)
S(x)

x’

25

Recovery

• Error-correcting code ECC: k bits � n bits

• Any two codewords differ by at least d bits

• S(x) = x � ECC(R)

where R is random string

Equiv: S(x) = syndrome(x)

• Given S(x) and x’ close to x:
– Compute x’ � S(x)
– Decode to get ECC(R)
– Compute x = S(x) � ECC(R)

d
x

ECC(R)
S(x)

x’

• Corrects d/2 errors
• How much entropy loss?

26

Entropy Loss

• Error-correcting code ECC: k bits � n bits

• Any two codewords differ by at least d bits

• S(x) = x � ECC(R)

where R is random string

H�(X | S(X))

= H�(X, R | S(X))

� H�(X) + H�(R) – |S(X)|

= H�(X) + k – n

d
x

ECC(R)
S(x)

Revealing n bits
costs � n bits of entropy

27

Entropy Loss

• Error-correcting code ECC: k bits � n bits

• Any two codewords differ by at least d bits

• S(x) = x � ECC(R)

where R is random string

H�(X | S(X))

= H�(X, R | S(X))

� H�(X) + H�(R) – |S(X)|

= H�(X) + k – n

Entropy loss = n – k
= redundancy of code

d
x

ECC(R)
S(x)

28

Using Sketches for Authentication

“How do I know
you’re Alice”?

x’=

x =

S(x), Hash(x)

• Input to Hash should be uniformly random
• X is not uniform (especially given S(X))

Problem

Recover

Hash

?=

Alice Server

29

Using Sketches for Authentication

“How do I know
you’re Alice”?

x’=

x =

S(x), Hash(x)

Alice Server

30

Padding via Random Functions

Alice Server x =

S(x), F, Hash(F(x))

Scramble input with “random” function F. Store F.
Solution

• 2-universal hash is sufficient (e.g. random linear map)

• (Any “strong extractor” also works)

• When is this secure?

“How do I know
you’re Alice”?

x’=

31

Padding via Random Functions

Alice Server x =

S(x), F, Hash(F(x))

Scramble input with “random” function F. Store F.
Solution

• Secure as long as:
Entropy-LossS + | Hash | + 2 log(1/ε) � H�(X)

• Proof idea: S(x), F, Hash(F(x)) ���� S(x), F, Hash(R)

• Similar to “left-over hash lemma / privacy amplification”

“How do I know
you’re Alice”?

x’=

32

Sketches and Authentication

• “Secure Sketch” + Hashing Solves Authentication

• “Hamming” errors can be handled with standard ECC

• Assumption: X has high entropy

– Necessary

– X could be several passwords taken together

• Similar techniques imply one can use X as key for

many crypto applications (e.g. encryption)

– Covers several previously studied settings

33

Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication

�“Set difference” distance

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data

34

Why Set Difference? [EHMS,FJ,JS]

• Inputs:

• Some representations of personal / biometric data:
– Fingerprints represented as feature list (minutiae/ridge meetings)

– List of favorite books

• X 	 {1,…, N}, #X = s

• dS(X,Y) = ½ # (X ∆ Y)
= Hamming distance
on vectors in {0,1}N.

X Y

X ∆ Y• Code-offset not good:
N-bit string is too long!

• Want: s log N bits

35

Recall: Secure Sketch

1. Error-correction: If x’ is “close” to x, then

2. Secrecy: Given S(X), it’s hard to predict X

Goals: - Minimize entropy loss: H�(X) – H�(X | S(X))

- Maximize tolerance: how “far” x’ can be from x

X S(X)S

Recover
x’

S(x) x

36

New Constructions for Set Difference

• X 	 {1,…, N} , #X = s , dS(X,Y) = ½ # (X ∆ Y)

• Two constructions
1. punctured Reed-Solomon code

2. Sublinear-time decoding of BCH codes from syndromes

• Both constructions:
– As good as code-offset could be (� optimal)

– Storage space � (s + 1) log N
– Entropy loss 2 e log N to correct e errors
– Improve previous best [JS02] (+ analysis)

X
Y

X ∆ Y

37

Reed-Solomon-based Sketch

X 	 {1,…, N} , #X = s , dS(X,Y) = ½ # (X ∆ Y)

Suppose N is prime, work in ZN

1. k := s – 2 e – 1

2. Pick random poly. P() of degree � k
3. P’() := monic degree s poly. s.t. P’(z)=P(z)

 z ���� X
4. Output S(X)=P’

X

P

P’

s=7, e=2, k=2

1 2 N

38

Reed-Solomon-based Sketch

X 	 {1,…, N} , #X = s , dS(X,Y) = ½ # (X ∆ Y)

Suppose N is prime, work in ZN

1. k := s – 2 e – 1

2. Pick random poly. P() of degree � k
3. P’() := monic degree s poly. s.t. P’(z)=P(z)

 z ���� X
4. Output S(X)=P’

Recovery: Given P’ and X’ close to X
1. Reed-Solomon

decoding yields P
2. Intersections of

P and P’ yield X

P

P’

s=7, e=2, k=2

X’
1 2 N

39

Reed-Solomon-based Sketch

X 	 {1,…, N} , #X = s , dS(X,Y) = ½ # (X ∆ Y)

Suppose N is prime, work in ZN

1. k := s – 2 e – 1

2. Pick random poly. P() of degree � k
3. P’() := monic degree s poly. s.t. P’(z)=P(z)

 z ���� X
4. Output S(X)=P’
Entropy loss:

H�(X | P’) = H�(X,P | P’) � H�(X) + H�(P) - |P’|
= H�(X) + (k+1)log N – s log N

= H�(X) – 2e log N

40

Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication

�“Set difference” distance: Reed-Solomon construction

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data

41

Other metrics?

• Real error models not as clean as Hamming & set diff.

• Algebraic techniques won’t apply directly.

42

Other metrics?

• Real error models not as clean as Hamming & set diff.

• Algebraic techniques won’t apply directly.

• Possible Approaches:

1. Develop new scheme tailored to particular metric

2. Reduce to easier metric via embedding

ψ : M1 � M2

x, y close � ψ(x), ψ(y) close

x, y far � ψ(x), ψ(y) far

M1

M2

ψ

43

Biometric embeddings

• Real error models not as clean as Hamming & set diff.

• Algebraic techniques won’t apply directly.

• Possible Approaches:

1. Develop new scheme tailored to particular metric

2. Reduce to easier metric via embedding

ψ : M1 � M2

x, y close � ψ(x), ψ(y) close

x, y far � ψ(x), ψ(y) far

M1

M2

ψ
A is a large set � ψ(A) is large

H�(A) large � H�(ψ(A)) large

44

Edit Distance (suggested by P. Indyk)

• Strings of bits

• d(x,y) = number of insertions &

deletions to go from x to y

• Good standard embeddings into Hamming not known

• Shingling [Broder]: “biometric” embedding into Set.Diff.

101010101010

10101101010

101011010101

45

Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication

�“Set difference” distance: Reed-Solomon construction

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data

[DS03]

46

Stronger Privacy?

• Previous notion: Unpredictability
– Can’t guess X even after seeing sketch

– Sufficient for using X as a crypto key

• What about the privacy of X itself?
– Do not want particular info about X leaked (say, first 20 bits)

• Ideal notion:

X almost independent of S(X)

• Problem: Some info must be leaked by S(X) (provably)

– Mutual information I(X ; S(X)) is large

• We want the ensure that “useful” information is hidden

47

Hiding All Functions ([CMR], à la [GM])

Definition: S(X) hides all functions of X if
For all functions g , for all adversaries A, � A’

Pr[A(S1(X), S2(X), …) = g(X)] – Pr[A’() = g(X)] < ε

Intuition:“A cannot guess g(X) given polynomially-many
copies of S(X)”

S1(X), S2(X),…X

g(X) difficult Implies
unpredictability

48

Hiding All Functions ([CMR], à la [GM])

Definition: S(X) hides all functions of X if
For all functions g , for all adversaries A, � A’

Pr[A(S1(X), S2(X), …) = g(X)] – Pr[A’() = g(X)] < ε

• No known constructions satisfy this
– (Some recent ideas by [vDW])

• Our results:
– Information-theoretically secure (vs computational)

– One use only

49

One-time Security [CMR,RW]

Definition: S(X) hides all functions of X if
For all functions g , for all adversaries A, � A’

Pr[A(S(X)) = g(X)] – Pr[A’() = g(X)] < ε

S(X)X

g(X) diff
icu

lt
One copy of S(X)

50

One-time Security [CMR,RW]

Definition: S(X) hides all functions of X if
For all functions g , for all adversaries A, � A’

Pr[A(S(X)) = g(X)] – Pr[A’() = g(X)] < ε

• Can be achieved in code-offset construction

– Use randomly chosen code from some family

S(x) = description of ECC, x � ECC(R)

– Need to keep decodability

– Exact parameters still unknown

51

Technique: Equivalence to Extraction

Definition: S(X) hides all functions of X if
For all functions g , for all adversaries A, � A’

Pr[A(S(X)) = g(X)] – Pr[A’() = g(X)] < ε

S() is an “extractor” if for all r.v.’s X1, X2 of min-entropy t

S(X1) �ε S(X2)

Thm: S(X) hides all functions of X, whenever H�(X)� t
�

S() is an “extractor” for r.v.’s of min-entropy t – 1

52

Outline

�Basic Setting: Password Authentication

�Simple abstraction: Secure Sketch

• Example: Hamming distance

• Secure Sketch � Authentication

�“Set difference” distance: Reed-Solomon construction

�Other schemes via metric embeddings: edit distance

�Privacy for Stored Data

53

Conclusions

• Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

– Abstraction, simplicity allow comparing schemes

– Constructions for Hamming, Set Difference, Edit Metrics

– Progress towards strong privacy of data

54

Conclusions

• Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

• New techniques for information-theoretic crypto

– Non-standard use of extractors

– Connections to coding theory, embeddings

55

Conclusions

• Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

• New techniques for information-theoretic crypto

• Applications to other settings

– perfect one-way functions,

– encryption of high-entropy messages [DS03],

– bounded-storage crypto [DV04],

– physically uncloneable functions [DLD04]

56

Conclusions

• Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

• New techniques for information-theoretic crypto

• Applications to other settings

• Future work

– Other “metrics”

– Stronger privacy (computational version a la [CMR98])

– Reusability

57

Conclusions

• Generic framework for turning noisy, non-uniform

data into secure cryptographic keys

• New techniques for information-theoretic crypto

• Applications to other settings

• Future work

• Bigger Picture?

58

Biometric “Security” Wide Open

• This talk: Storage

• Other vulnerabilities:

– Spoofing

– Hardware must be secure

• Bigger threat to privacy comes from misuse/overuse

– Function creep (SSN)

– Not revocable

– Can they be kept secret even in principle?

59

Questions?

60

edit distance

• dis(x,y) = number of insertions &

deletions to go from x to y

• E.g., typos in a passphrase

• Idea: convert to set difference via shingling [Broder]

• Map a string to a set of all its length-c substrings

x = Albuquerque-Massachusetts-Winnipesaukee
y = Albuqurque-Masachusetts-Winipessaukee

dis(x,y) = 4

61

shingling for fuzzy extractors

• View string as set of shingles
• c-shingling

– each edit error gives c set errors
– entropy loss (n/c) log n,

where n is input string length

• Optimize c
• If H ∞(W) = Θ (n),

can extract Θ (n) bits
tolerating Θ(n / log2 n) errors

Albuq
lbuqu
buque
uquer
querq
uerqu
erque
rque-
que-M
ue-Ma
e-Mas
-Mass
Massa

Albuq
lbuqu
buqur
uqurq
qurqu
urque

rque-
que-M
ue-Ma
e-Mas
-Masa
Masac

x = Albuquerque-Massachusetts-Winnipesaukee
y = Albuqurque-Masachusetts-Winipessaukee

x y

62

Other Slides

63

The Problem: We’re Human

64

Stuff I want to say

• generic framework

• general tools

• About authentication: interplay between computational

assumptions and information-theoretic technique

• practical… may be implemented

• General context: provable security

65

Biometric embeddings

ψ : M1 � M2

We care about entropy: non-standard requirements

• x,y close � ψ(x), ψ(y) close

• A is a large set � ψ(A) is large

d1(x,y)

d2(ψ(x), ψ(y))
� α

A
ψ(A)

�
β or, equivalently
H�(X)

H�(ψ(X))
�
β

66

Statistical Distinguishability

• Statistical Difference (L1): For distributions p0(x), p1(x):

SD(p0,p1) = ½ ����x | p0(x) – p1(x) |
• SD measures distinguishability:

If b�{0,1}, x� pb then

maxA | Pr[A(x)=b] – ½ | = ½ SD(p0,p1)

• (Notation: A �ε B if SD(A,B)�ε)

67

Statistical Distinguishability

• Two probability distributions p0(x), p1(x)

Sphinx:
1. Flips a fair coin
2. - Heads: Samples Z according to p0

- Tails: Samples Z according to p1
3. Shows Z to Greek Hero

Greek Hero: Guesses if coin was heads or tails.

Hero can wins with probability at least ½

Hero wins w. prob. ½ + εεεε � p0, p1 are εεεε-distinguishable

68

Key Recovery [EHMS, FJ, JS]

www.Fingers2Keys.com

Generate

Recover

69

Lemma

If

• F:{0,1}n � {0,1}N chosen from 2-wise indep. hash f’ly

(N can be arbitrarily large)

• h: {0,1}N � {0,1}k any function

• X, Y such that X � {0,1}n and H�(X|Y) � k + 2log(1/ε)

Then

Y, F, h(F(X)) �ε Y, F, h(R)

