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Symmetric Encryption

• Shannon: Symmetric Encryption without computational 
assumptions requires  k � n (achieved by one-time pad)

• Russell and Wang 2002 [RW02]: What can be said when 

the message is guaranteed to have high entropy?

E D

Key (k bits long)

message (n bits long) messageEve

E(m;k)
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Russell-Wang: Entropic Security

Entropic security for symmetric encryption [RW02]:

1. No computational assumptions (statistical secrecy)

2. Assume message distribution has high entropy

3. Constructions with short key (not possible without #2)

Motivation:

• Systematic study, simplification of [RW02] definition

• Understand “high-entropy secrets” in simple setting

• Develop tools for settings other than encryption
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Russell-Wang: Entropic Security

Entropic security for symmetric encryption [RW02]:

1. No computational assumptions (statistical secrecy)

2. Assume message distribution has high entropy

3. Constructions with short key (not possible without #2)

This talk: • Definitions & Background

• Equivalent characterizations

• Simpler constructions

• Lower bounds

• Application to other settings
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Definitions: Symmetric Encryption

• (No security requirements yet)

• Encryption Scheme: Pair of functions (E,D) :
– E takes message m � {0,1}n

key s � {0,1}k

randomness i � {0,1}r

– Ciphertext is E(m,s;i) (write E(M) for random i,s)

– Decryption: D(E(m,s;i) ,s) = m (with probability 1)

• Parameters: n = |m|, k=|s|
• s � Uk (= uniform distribution on {0,1}k)

Not shared
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Min-Entropy of Random Variables

• There are various ways to measure entropy…

• Min-entropy: For random variable M on {0,1}n :

H�(M) = -log (maxm Pr[M=m])

• Uniform on {0,1}n :   H�(Un) = n

• “ Message has min-entropy t ” means that

– No message arises with probability � 2-t

– Adversary’s probability of guessing the message is � 2-t
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Entropic Security [RW02]

Definition: (E,D) is (λ,ε)-entropically secure if 
���� distributions M on {0,1}n with H�(M) � n-λ
���� (adversaries)  A:{0,1}* � {0,1}

���� predicates g:{0,1}n � {0,1}
���� random variable A’ (independent of M)

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε
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Entropic Security [RW02]

Definition: (E,D) is (λ,ε)-entropically secure if 
���� distributions M on {0,1}n with H�(M) � n-λ
���� (adversaries)  A:{0,1}* � {0,1}

���� predicates g:{0,1}n � {0,1}
���� random variable A’ (independent of M)

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

Caveats:
• Assumes that message has high entropy!

What if the adversary knows more than you think he knows?
• Computational “issues”: what happens when such a scheme gets 

plugged into more complex situations?
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Entropic Security [RW02]

Definition: (E,D) is (λ,ε)-entropically secure if 
���� distributions M on {0,1}n with H�(M) � n-λ
���� (adversaries)  A:{0,1}* � {0,1}

���� predicates g:{0,1}n � {0,1}
���� random variable A’ (independent of M)

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

[RW02] There exist (λ,ε)-ES schemes with 

k 	 λ + 3 log(1/ε)

This work: equivalent definition, new constructions, lower bounds.
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Context: Perfect Security [Shannon]

• Shannon: Perfect Security 
 message independent of ciphertext

� distrib’s M on {0,1}n:    M independent of E(M)

• Equivalently    � m,m’�{0,1}n:  E(m) � E(m’) � E(Un)
(sufficient to require independence only for M=Un)

• Theorem: Perfect security requires k � n.

• “Proof”: Take any possible ciphertext c

Perfect Secrecy � c can be decrypted to any m � {0,1}n

Each key decrypts c to at most one message

� 2n different keys
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Context: Computational Security [GM84]

Theorem [GM84]: Definitions above are equivalent.

Definition: (E,D) is message-indistinguishable if

� m,m’�{0,1}n E(m) 	PPT E(m’)

Definition: (E,D) is semantically-secure if 
� distributions M on {0,1}n

� PPT (prob. poly. time) circuits (adversaries)  A
� functions g:{0,1}n � {0,1}*

� random variable A’ (independent of M)

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � negligible
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Statistical Security?

• Natural Generalizations: replace computational

indistinguishability with statistical indistinguishability:

• Statistical Difference (L1): For distributions p0(x), p1(x):

SD(p0,p1) = ½ ����x | p0(x) – p1(x) |
• SD measures distinguishability: 

If b�{0,1}, x� pb then  

maxA | Pr[A(x)=b] – ½ | = ½ SD(p0,p1)

• (Notation: X1 				εεεε X2 if SD(X1,X2) �
�
�
�
εεεε )
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Statistical Security?

• Natural generalizations: replace computational

indistinguishability with statistical indistinguishability

Definition: (E,D) is statistically ε-message-indistinguishable if

� m,m’�{0,1}n :   E(m) 	ε E(m’)

Definition: (E,D) is statistically ε-semantically-secure if 
� distrib’s M ,  � A, � g:{0,1}n � {0,1}* , � A’ :

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

• Def’s are equivalent, imply k � n (as in perfect secrecy)

but proofs go through 2-point distributions M� {m,m’}  
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Entropic Security [RW02]

Definition: (E,D) is (λ,ε)-entropically secure if 
� distributions M on {0,1}n with H�(M) � n-λ
� (adversaries)  A:{0,1}* � {0,1}

� predicates g:{0,1}n � {0,1}
� random variable A’ (independent of M)

| Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

[RW02] There exist (λ,ε)-ES schemes with 

k 	 λ + 3 log(1/ε)

Two constructions: twists on the one-time pad.
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[RW02]: Two constructions

1.  E(m,s) = m � b(s), with b : {0,1}k�{0,1}n.

– b(�) is carefully chosen: range is “δ-biased set”

– Fourier-based proof works only for uniform message

– k 	 2 log n + 3 log (1/ε) (here λ = 0)

2.  E(m,s; i) = (φi , φi(m) + s)

– {φi: {0,1}n�{0,1}n }  are 3-wise independent permutations

– k 	 λ + 3 log (1/ε) (works for all λ)

– 3n bits of additional randomness, difficult proof
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Outline

• Equiv. Def: Indistinguishability for high-entropy sources
Intuition: Indistinguishable schemes 	 extractors

• Two Simple, General Constructions:

– Step in an expander graph

– Random hash functions (less high-tech)

• Lower bounds: k � λ, (special case: k � λ + log(1/ε) )

• “Stronger” Equiv. Def.: all functions hard to predict 

(not only predicates)
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Indistinguishability for High Entropy

Def: (λ,ε)-entropically secure if � M , H�(M) � n-λ , � A  � pred. g

� A’ :    | Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

Recall: (Ordinary) semantic security �

� distributions M,M’: E(M) 	PPT E(M’) 

Definition: (E,D) is (t,ε)-indistinguishable (IND) if  

� distributions M,M’ with H�(M) , H�(M’) � t:
SD(E(M),E(M’)) � ε

Proposition: (λλλλ,εεεε)-ES equiv. to ( t , εεεε’)-IND for t = n-λ-1



19

Proof: (λ,ε)-ES � (n-λ-1,4ε)-IND

Fact: H�(M)� t� M is mixture of flat distrib’s on 2t pts. 

• Take any M0,M1 of min-entropy � t = n-λ-1

(Sufficient to prove lemma for flat distrib’s on 2t points)

• Suppose M0,M1 have disjoint support: 
Use g(x) = b if x � supp(Mb) and M* = Mb for b�{0,1}

• H�(M*) = t+1 =n-λ� No A predicts g better than ½+ε
� SD( E(M0), E(M1) ) � 2ε

• If M0,M1 not disjoint, find M2 disjoint to both.
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Proof: (n-λ-1,ε)-IND � (λ,ε)-ES

• Say Pr[A(E(M))=g(M)] � (1-p)+ε
where p = Pr[g(M)=1] � ½ 

• We want: M0,M1 disting’d by A(E(����))

• Try #1: Mb = g-1(b)

• Problem: g-1(1) may be too small

(Min-entropy of M1 too low –

get weaker reduction)
g-1(0)

g-1(1)M
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Proof: (n-λ-1,ε)-IND � (λ,ε)-ES

• Say Pr[A(E(M))=g(M)] � (1-p)+ε
where p = Pr[g(M)=1] � ½ 

• We want: M0,M1 disting’d by A(E(����))

• Try #2: add random points from g-1(0)

qm = Pr[A(E(m))=1]

rb = Pr[A(E(M))=1 | g(M)=b]

= E[ qM | g(M)=b ]

In expectation: Pr[A(E(M0))] = r0

Pr[A(E(M1))] = 2p r1 + (1-2p)r0

… � Pr[A(E(M1))] – Pr[A(E(M0))] � 2ε

g-1(0)

g-1(1)M

=M1

=M0
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Recall: Indistinguishability

Def: (λ,ε)-entropically secure if � M , H�(M) � n-λ , � A  � pred. g

� A’ :    | Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

Def: (t,ε)-indistinguishable (IND) if �M0,M1, H�(Mb) � t:
E(M0) 	ε E(M1)

Proposition: (λλλλ,εεεε)-ES equiv. to ( t , εεεε’)-IND for t = n-λ-1

• How can we use this?

• Intuition:

Indistinguishability 	
extractor with “invertibility”
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Two General Constructions

#1 : Steps on an expander graph

#2: Random Hashing



24

Expander Graphs

• Important tool in … everything.

• Expander = regular, undirected graph with fast mixing time

– Let A = adjacency matrix of d-regular (undirected) graph G

– Vector (1,…,1) has eigenvalue d

– Other eigenvalues � [-d,d]

• G is a β-expander if other eigenvalues � [-βd , βd]

• Random walks converge quickly:

Fact: If H�(p) � t, then walk is ε-far from uniform after at most

steps, where |G| = 2n.n – t + 2 log(1/ε)
2 log (1/β)

When β is 
very small, 

walk 
converges in 

1 step
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Using Graphs for Encryption

• Encryption of m = random step from m

• Take regular G with V={0,1}n and d=2k

• Consider E(m,s) = N(m,s)
( N(u,i) = i th neighbour of node u )

Q: When can you decrypt?

A: Need labeling N with an inverter N’:

N’( N(u,i) , i) = u

Exercise: Every regular undirected graph 
has an invertible labeling.

G

u

N(u,1)

N(u,2)

N(u,2k)

N(u,i)
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Using Graphs for Encryption

• Encryption of m = random step from m

• Take regular G with V={0,1}n and d=2k

• Consider E(m,s) = N(m,s)
( N(u,i) = i th neighbour of node u )

Q: When can you decrypt?

A: Need labeling N with an inverter N’:

N’( N(u,i) , i) = u

Easier exercise: Cayley graphs are 
invertible. 

G

u

N(u,1)

N(u,2)

N(u,2k)

N(u,i)
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Tangent: Cayley Graphs

• Let (V,*) be a group, B={g1,…,gd} a set of generators.

Cayley graph for (V,*,B) has vertex set V and edges:
E = { (u, g*u) | u � V, g � B }.

• Graph is undirected if B contains its inverses.
– E.g. hypercube {0,1}n with B ={vectors of weight 1}

• Natural labeling is N(u,i) = gi*u

• Invertible since N’(w,i) = gi
-1*w

• Graphs in this talk are Cayley graphs
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Using Graphs for Encryption

• Take regular G with V={0,1}n and d=2k

• Consider E(m,s) = N(m,s)
( N(u,i) = i th neighbour of node u )

Q: When is E (t,ε)-indistinguishable?

A: When walk converges in 1 step.

Sufficient: G is β-expander with β2 � ε2 2t-n

Theorem[LPS]: There exist (explicit) Cayley

graphs with β2 	 1/d = 2-k

Corollary: There exist (λ,ε)-ES encryption 

schemes with k 				 λλλλ + 2 log(1/εεεε)

G

u

N(u,1)

N(u,2)

N(u,2k)

N(u,i)
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[RW02]: Two constructions

1.  E(m,s) = m � b(s), with b : {0,1}k�{0,1}n.

– b(�) is carefully chosen: range is “δ-biased set”

– Fourier-based proof works only for uniform message

– k 	 2 log n + 3 log (1/ε) (here λ = 0)

2.  E(m,s; i) = (φi , φi(m) + s)

– {φi: {0,1}n�{0,1}n }  are 3-wise independent permutations

– k 	 λ + 3 log (1/ε) (works for all λ)

– 3n bits of additional randomness, difficult proof
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[RW02]: First construction

1.  E(m,s) = m � b(s), with b : {0,1}k�{0,1}n.

– b(�) is carefully chosen: range is “δ-biased set”

– Fourier-based proof works only for uniform message

– k 	 2 log n + 3 log (1/ε) (here λ = 0)

Same scheme, new analysis:

• G =  Cayley graph for {0,1}n with generators {b(s) | s�{0,1}k} 

• [BSVW] observe that G is a δ-expander (degree = n2/δ2)

• Previous slide � k = λλλλ + 2 log n + 2 log (1/εεεε)
(Same proof works for all λ)
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Two General Constructions

#1 : Steps on an expander graph

#2: Random Hashing
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Hashing Construction

Goals:

• Schemes with simple combinatorial proofs

• Generalize second construction of Russell and Wang

Outline:

• Modify “Left-over Hash Lemma” 
(a.k.a. “Privacy Amplification”)

• One proof for simplified scheme and Russell-Wang 
construction
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Pairwise Independent Hash Functions

• A collection of functions H={hi}, hi: X�Y is 2-wise 

independent if  � x,x’ �
X, x ≠ x’, and  � y,y’�
Y:

PrH� HHHH[ H(x)=y and H(x’)=y’ ] = 1/|Y|2

• Equivalently: � x,x’ �
XXXX, x ≠ x’, when H� HHHH, 

H(x), H(x’) are independent and uniform

• Typical construction: If X X X X ={0,1}n, Y Y Y Y ={0,1}p, p � n, 

View XXXX={0,1}n as GF(2n), use 

HHHH = { x � last-p-bits(ax + b) | a,b � GF(2n) }

Requires 	 2n bits 
of randomness
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Left-over Hash Lemma / Privacy Amplification 
[BBR,IZ,…]

LOHL [IZ89]: Let HHHH={hi} be 2-wise : (n bits) � (p bits)

If H�(M)� t and t � p + 2log(1/ε) then

( H , H(M) ) 	ε ( H , Up ) ,    when  H�HHHH.

• Good for extractors, but not encryption…

LOHL’:  Let HHHH={hi} be 2-wise : (n’ bits) � (n bits) 

If A,B indep., and H�(A) + H�(B) � n + 2log(1/ε) then

( H , A � H(B) ) 	ε ( H , Un ),    when  H�HHHH
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Modified Left-over Hash Lemma

LOHL’:  Let HHHH={hi} be 2-wise : (n’ bits) � (n bits) 

If A,B indep., and H�(A) + H�(B) � n + 2log(1/ε) then

( H , A � H(B) ) 	ε ( H , Un ),    when  H�HHHH

Proof idea: As with LOHL, compute collision probability
• CP(X) = �x px

2 where px = Pr[X=x]

• H�(X)� t� CP(X) � 2-t

Collision probability of ( H , A� H(B) ) is at most

• If  X � S and CP(X) =(1+2ε2)/|S| then   X 	ε uniform

∴∴∴∴ ( H , A � H(B) ) 	ε uniform. QED.

1+2n - t - t’

|H| 2n
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Using LOHL’ for Encryption

LOHL’:  Let HHHH={hi} be 2-wise : (n’ bits) � (n bits) 
If A,B indep., and H�(A) + H�(B) � n + 2log(1/ε) then

( H , A � H(B) ) 	ε ( H , Un ),    when  H�HHHH

Schemes a) E(m,s;h) = (h ,  m + h(s) )

or  b) E(m,s;h) = (h ,  h(m) + s )

• Either  a) set A=M, B=S
or  b) set A=S, B=M

• LOHL’� (t,ε)-indistinguishable for k � (n-t) + 2log(1/ε)
� (λ,ε)-ES for k � λ + 2 log(1/ε)

Here HHHH contains 
only permutations
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[RW02]: Two constructions

1.  E(m,s) = m � b(s), with b : {0,1}k�{0,1}n.

– b(�) is carefully chosen: range is “δ-biased set”

– Fourier-based proof works only for uniform message

– k 	 2 log n + 3 log (1/ε) (here λ = 0)

2.  E(m,s; i) = (φi , φi(m) + s)

– {φi: {0,1}n�{0,1}n }  are 3-wise independent permutations

– k 	 λ + 3 log (1/ε) (works for all λ)

– 3n bits of additional randomness, difficult proof
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[RW02]: Second construction

2.  E(m,s; i) = (φi , φi(m) + s)

– {φi: {0,1}n�{0,1}n }  are 3-wise independent permutations

– k 	 λ + 3 log (1/ε) (works for all λ)

– 3n bits of additional randomness, difficult proof

Same scheme, new analysis:

• In particular, HHHH={φi} is 2-wise independent permutation family

• LOHL’� scheme secure for k 				 λλλλ + 2 log(1/εεεε)

• Simpler schemes are possible…
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Further simplification

• “Full” 2-wise independence unnecessary for LOHL’

• Sufficient: � x ≠ x’:     H(x) � H(x’) � Un

• Construction: HHHH = {x ���� ax | a � GF(2n)}

• The result: E(m,s;a) = (a , m ���� as)

– Secure for k � λ + 2 log(1/ε)

– Uses only n additional bits of randomness
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Outline

• Equiv. Def: Indistinguishability for high-entropy sources
Intuition: Indistinguishable schemes 	 extractors

• Two Simple, General Constructions:

– Step in an expander graph

– Random Hash Functions

• Lower bounds: k � λ, (special case: k � λ + log(1/ε) )

• “Stronger” Equiv. Def.: all functions hard to predict 

(not only predicates)
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Lower Bounds

• Lower Bound via Shannon Bound:

k ���� λλλλ

• Lower bound via lower bounds on extractors:

k ���� λλλλ + log(1/εεεε)

– Requires that extra randomness be public, i.e.

E(m,s;i) = (i , E’(m,s;i) )

– All the schemes discussed fit this framework
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Lower Bounds

• Lower Bound via Shannon Bound:

k ���� λλλλ

• Lower bound via lower bounds on extractors:

k ���� λλλλ + log(1/εεεε)

– Requires that extra randomness be public, i.e.

E(m,s;i) = (i , E’(m,s;i) )

– All the schemes discussed fit this framework
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Simple Lower Bound

Def: (λ,ε)-entropically secure if � M , H�(M) � n-λ , � A  � pred. g

� A’ :    | Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

Proof (reduce to bounds on regular encryption):

• ���� w � {0,1}λ , define distribution Mw = w || Un-λ

(i.e.:   Mw =  w followed by n-λ random bits)

• Indistinguishability�




� v,w:   E(Mv) 	ε E(Mw)

• This is regular encryption (non-entropic) of w !
• Need k � λ
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Lower Bounds

• Lower bound via Shannon Bound:

k ���� λλλλ

• Lower bound via lower bounds on extractors:

k ���� λλλλ + log(1/εεεε)

– Requires that extra randomness be public

• These bounds are quite crude

• Probable (?) answer: k � λ + 2log(1/ε) 
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Outline

• Equiv. Def: Indistinguishability for high-entropy sources
Intuition: Indistinguishable schemes 	 extractors

• Two Simple, General Constructions:

– Step in an expander graph

– Hash functions

• Lower bounds: k � λ, (special case: k � λ + log(1/ε) )

• “Stronger” Equiv. Def.: all functions hard to predict 

(not just predicates)
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Indistinguishability for High Entropy

Def: (λ,ε)-entropically secure if � M , H�(M) � n-λ , � A  � pred. g

� A’ :    | Pr[A(E(M)) = g(M)]  – Pr[A’ = g(M)]  | � ε

Recall: (Ordinary) semantic security �

� distributions M,M’: E(M) 	PPT E(M’) 

Definition: (E,D) is (t,ε)-indistinguishable (IND) if  

� distributions M,M’ with H�(M) , H�(M’) � t:
SD(E(M),E(M’)) � ε

Proposition: (λλλλ,εεεε)-ES equiv. to ( t , εεεε’)-IND for t = n-λ-1

Q: Can we replace “for all predicates” 
with “for all functions”?
A: Yes. Resulting definition is even 
closer to semantic security.
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Equivalence of Functions and Predicates

For function f, random variable M : 

predf (M) =  most likely value  =  maxz{ Pr[f(M) = z] }

Main Lemma: Suppose

– M r.v. with H�(M) � 2log(1/ε) 

– E() , A()  randomized maps, f arbitrary function.

– Pr[ A(E(M)) = f(M) ]   � predf (M) + ε

Then there exist predicates B and g such that 

Pr[ B(A(E(M))) = g(M) ]   � predg (M) + ε / 4
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Conclusions

• Systematic study of [RW02] notion of entropic security
– equivalent definition

– simple constructions, proofs, lower bounds

• “Computational issues”: 
– Can these proofs preserve running time of adversaries? 

– Use computational min-entropy? (recently provided by [BSW])

• In what other contexts is ES interesting? 
– Password Hashing [CMR98]: similar definition

– “Fuzzy fingerprints” [DRS03] 


