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Symmetric Encryption

Key (k bits long)

E(m;k)

message (n bits long) message

Eve

e Shannon: Symmetric Encryption without computational

assumptions requires k > n (achieved by one-time pad)

e Russell and Wang 2002 [RWO02]: What can be said when

the message 1s guaranteed to have high entropy?



Russell-Wang: Entropic Security

Entropic security for symmetric encryption [RWO02]:
1. No computational assumptions (statistical secrecy)
2. Assume message distribution has high entropy

3. Constructions with short key (not possible without #2)
Motivation:
e Systematic study, simplification of [RWO02] definition
e Understand “high-entropy secrets” 1in simple setting

e Develop tools for settings other than encryption



Russell-Wang: Entropic Security

Entropic security for symmetric encryption [RWO02]:
1. No computational assumptions (statistical secrecy)
2. Assume message distribution has high entropy

3. Constructions with short key (not possible without #2)

This talk: ¢ Definitions & Background
e Equivalent characterizations
e Simpler constructions
e Lower bounds

e Application to other settings



Definitions: Symmetric Encryption

e (No security requirements yet)

e Encryption Scheme: Pair of functions (E,D) :

— E takes message m e {0,1}"
key s € {0,1}*

randomness [ € {0,] }'—='Not shared

— Ciphertext is E(m,s;i) (write E(M) for random i, s)
— Decryption: D(E(m,s;1) ,s) = m (with probability 1)
e Parameters: n = Iml, k=Isl

5 + U, (= uniform distribution on {0,1}%)



Min-Entropy of Random Variables

e There are various ways to measure entropy...

e Min-entropy: For random variable M on {0,1}":
H_(M) = -log (max , Pr[M=m])
 Uniformon {0,1}": H_(U,)=n

* “ Message has min-entropy  ” means that

— No message arises with probability > 27/

— Adversary’s probability of guessing the message is < 27/



Entropic Security [RWO02]

Definition: (E,D) is (A,€)-entropically secure if
V distributions M on {0,1}" with H_ (M) > n-A
V (adversaries) A:{0,1}" — {0,1}
V predicates g:{0,1}" — {0,1}
d random variable A’ (independent of M)

| PrlA(E(M)) = g(M)] — Pr[A’ =g(M)] | < ¢




Entropic Security [RWO02]

Definition: (E,D) is (A,€)-entropically secure if
V distributions M on {0,1}" with H_ (M) > n-A
V (adversaries) A:{0,1}" — {0,1}

V predicates g:{0,1}" — {0,1}
d random variable A’ (independent of M)

| PrlA(E(M)) = g(M)] — Pr[A’ =g(M)] | < ¢

Caveats:

e Assumes that message has high entropy!
What if the adversary knows more than you think he knows?

e Computational “issues’: what happens when such a scheme gets
plugged into more complex situations?



Entropic Security [RWO02]

Definition: (E,D) is (A,€)-entropically secure if
V distributions M on {0,1}" with H_ (M) > n-A
V (adversaries) A:{0,1}" — {0,1}
V predicates g:{0,1}" — {0,1}
d random variable A’ (independent of M)

| PrlA(E(M)) = g(M)] — Pr[A’ =g(M)] | < ¢

[RWO02] There exist (A,£)-ES schemes with
k~ A+ 3log(l/€)

This work: equivalent definition, new constructions, lower bounds.
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Context: Perfect Security [Shannon]

Shannon: Perfect Security < message independent of ciphertext

V distrib’s M on {0,1}": M independent of E(M)
Equivalently V m,m’€{0,1}": E(m)=E(m’) = E(U,)

(sufficient to require independence only for M=U,)

Theorem: Perfect security requires kK > n.

“Proof”: Take any possible ciphertext ¢

Perfect Secrecy = ¢ can be decrypted to any m € {0,1}"

Each key decrypts € to at most one message

> 2" different keys
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Context: Computational Security [GM84]

Definition: (E,D) 1s semantically-secure if
V distributions M on {0,1}”

V PPT (prob. poly. time) circuits (adversaries) A
V functions g2:{0,1}" — {0,1}"
J random variable A’ (independent of M)

| Pr{ACE(M)) = g(M)] — Pr[A’ = g(M)] | < negligible

Definition: (E,D) 1s message-indistinguishable 1f

Vmm €{0,1}" E(m) ~ppp E(m’)

Theorem [GM84]: Definitions above are equivalent.
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Statistical Security?

Natural Generalizations: replace computational
indistinguishability with statistical indistinguishability:

Statistical Difference (L,): For distributions p,(x), p;(x):

SD(pyp;) =22 | py)-py0) |

SD measures distinguishability:
It 5<—-{0,1}, x <~ p,, then

max, | Pr[A(x)=b] - 2| =% SD(p,p,)
(Notation: X; =~ X, if SD(X,X,) <€)



Statistical Security?

e Natural generalizations: replace computational

indistinguishability with statistical indistinguishability

Definition: (E,D) 1s statistically e-semantically-secure if
V distrib’s M, VA,V g:{0,1}" — {0,1}*,3A":

| PrlA(E(M)) = g(M)] — Pr[A> =g(M)] | < ¢

Definition: (E,D) 1s statistically e-message-indistinguishable if

Vmm €{0,1}": E(m)~, E(m’)

e Def’s are equivalent, imply k > n (as in perfect secrecy)

but proofs go through 2-point distributions M < {m,m’}



Entropic Security [RWO02]

Definition: (E,D) is (A,€)-entropically secure if
V distributions M on {0,1}" with H_ (M) > n-A
V (adversaries) A:{0,1}" — {0,1}
V predicates g:{0,1}"* — {0,1}
J random variable A’ (independent of M)

| PrlA(E(M)) = g(M)] — Pr[A’ =g(M)] | < ¢

[RWO02] There exist (A,£)-ES schemes with
k~ A+ 3log(l/€)

Two constructions: twists on the one-time pad.
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[IRWO02]: Two constructions

1. E(m,s)=m & b(s), with b : {0,1}}—{0,1}".
— b(-) is carefully chosen: range is “0-biased set”

— Fourier-based proof works only for uniform message

— k=2logn+3log(1/¢) (here A = 0)
2. E(mys; i) = (0, , 0,(m) + 5)

— {0;: {0,1}"—={0,1}" } are 3-wise independent permutations
— k=~ A+ 3log (1/¢) (works for all A)

— 3n bits of additional randomness, difficult proof



Outline

Equiv. Def: Indistinguishability for high-entropy sources

Intuition: Indistinguishable schemes ~ extractors

Two Simple, General Constructions:
— Step 1n an expander graph

— Random hash functions (less high-tech)

Lower bounds: kK > A, (special case: k > A + log(1/¢€) )

“Stronger’” Equiv. Def.: all functions hard to predict

(not only predicates)



Indistinguishability tor High Entropy

Def: (A,e)-entropically secure if VM , H (M) > n-A,vA V pred. g
JA" - | PrAEWMD) = gM)] - Pr{A" = g)] | <e

Recall: (Ordinary) semantic security =
V distributions M\M’: E(M) ~pp E(M’)

Definition: (E,D) 1s (¢,€)-indistinguishable (IND) if
V distributions MM’ with H_(M) , H . (M’) > t:
SD(E(M),E(M’)) < €

Proposition: (A,£)-ES equiv. to (¢, €’)-IND for t = n-A-1




Proof: (4,€)-ES = (n-A-1,4¢)-IND

Fact: H_(M)> t = M is mixture of flat distrib’s on 2/ pts.
o Take any M,,M, of min-entropy > ¢ = n-A-1
(Sufficient to prove lemma for flat distrib’s on 2’ points)

* Suppose M, M, have disjoint support:
Use g(x) = b if x € supp(M,) and M* = M, for b<{0,1}

» H (M%) =t+1 =n-A = No A predicts g better than Y2+¢
= SD( EM,), EM)) ) < 2¢

e It My,M, not disjoint, find M, disjoint to both.



Proof: (n-A-1,€)-IND = (A,€)-ES

Say PrlA(E(M))=g(M)] = (1-p)+€ |
where p = Pr[g(M)=1] < 12

We want: M, M, disting’d by A(E(+)) M
Try #1: M, = g''(b)
Problem: ¢-'(1) may be too small

(Min-entropy of M, too low —

get weaker reduction)




Proof: (n-A-1,€)-IND = (A,€)-ES

+ Say PHACE(M)=g(M)] > (I-p)+e | —
where p = Pr[g(M)=1] < 2

 We want: M,M, disting’d by A(E(+))
e Try #2: add random points from g-(0)
q,, = PrlA(E(m))=1]
r, = PrlA(E(M))=1 | g(M)=Db]
=E[ g\ (M)=b ]
In expectation: PrlA(E(M,))] = r,
Pr{A(E(M )] = 2p r, + (1-2p)r, =M,
... = Prl[A(E(M,))] - PrlA(E(M,))] > 2¢ /=M,




Recall: Indistinguishability

Def: (A,e)-entropically secure if VM , H (M) > n-A,vA V pred. g
JA" - | PrAEWMD) = gM)] - Pr{A" = g)] | <e

Def: (z,)-indistinguishable (IND) if V M, M, H_(M,) > t:
EM,) ~.E(M,)

Proposition: (A,£)-ES equiv. to (¢, €’)-IND for t = n-A-1

e How can we use this?

e Intuition:

Indistinguishability ~ extractor with “invertibility”




Two General Constructions

#1 : Steps on an expander graph
#2: Random Hashing




Expander Graphs

e Important tool in ... everything.

e Expander = regular, undirected graph

When 3 is
very small,
walk
converges in
1 step

— Let A = adjacency matrix of d-regular

— Vector (1,...,1) has eigenvalue d

— Other eigenvalues € [-d,d]

e Gis a fexpander if otherQn .

* Random walks convgsge yuickly:

Fact: It H_(p) > 1, then walk 1s e-far from uniform after at most

n—t+2log(l/e)
2 log (1/5)

steps, where |G| = 2",
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Using Graphs for Encryption

e Encryption of m = random step from m
o Take regular G with V={0,1}" and d=2*

e Consider E(m,s) = N(m,s)
( N(u,i) = i " neighbour of node u )

Q: When can you decrypt?
A: Need labeling N with an inverter N’:
N (Nu,i),i)=u
Exercise: Every regular undirected graph G

has an invertible labeling.



Using Graphs for Encryption

e Encryption of m = random step from m
o Take regular G with V={0,1}" and d=2*

e Consider E(m,s) = N(m,s)
( N(u,i) = i " neighbour of node u )

Q: When can you decrypt?

A: Need labeling N with an inverter N’:
N (Nu,i),i)=u

Easier exercise: Cayley graphs are

invertible.



Tangent: Cayley Graphs

e Let (V,*)be a group, B={g,,...,g,} a set of generators.

Cayley graph for (V, * B) has vertex set V and edges:
E={(u g*u)ylueV, geB}.

e Graph 1s undirected 1f B contains its inverses.

— E.g. hypercube {0,1}" with B ={vectors of weight 1}
e Natural labeling 18 N(u,1) = g, *u
o Invertible since N'(w,i) = g1 *w

e Graphs in this talk are Cayley graphs



Using Graphs for Encryption

o Take regular G with V={0,1}" and d=2*

e Consider E(m,s) = N(m,s)
( N(u,i) = i " neighbour of node u )

Q: When is E (t,€)-indistinguishable?

A: When walk converges in 1 step.

Sufficient: G is p-expander with 7 < g2 2"

Theorem[LPS]: There exist (explicit) Cayley
graphs with B2 ~ 1/d = 2°%

Corollary. There exist (A,€)-ES encryption
schemes with k ~ A\ + 2 log(1/€)
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IRWO02]: Two constructions

1. E(m,s) =m @ b(s), with b : {0,1}*—{0,1}".
— b(-) is carefully chosen: range is “0-biased set”

— Fourier-based proof works only for uniform message

— k=2logn+3log (1/€) (here A = 0)

2. E(m,s; 1) = (0, , 0.(m) + s)

— {0 {0,1}"—{0,1}"} are 3-wise independent permutations
— k=~ A+ 3log (1/¢) (works for all A)

— 3n bits of additional randomness, difficult proot




IRWO02]: First construction

1. E(m,s) =m @ b(s), with b : {0,1}*—{0,1}".
— b(-) is carefully chosen: range is “0-biased set”

— Fourier-based proof works only for uniform message

— k=2logn+3log (1/€) (here A = 0)

Same scheme, new analysis:

e G = Cayley graph for {0,1}" with generators {b(s) | s€{0,1}*}
« [BSVW] observe that G is a 0-expander (degree = n%/0?)

e Previousslide =k=A+2logn + 2log (1/¢)

(Same proof works for all A)




Two General Constructions

#1 : Steps on an expander graph
#2: Random Hashing




Hashing Construction

Goals:

e Schemes with simple combinatorial proofs

e Generalize second construction of Russell and Wang
Outline:

e Modity “Left-over Hash Lemma”

(a.k.a. “Privacy Amplification”)

e One proof for simplified scheme and Russell-Wang

construction



Pairwise Independent Hash Functions

A collection of functions H={h.}, h.. X— is 2-wise
independent if Vx,x’ € X, x#x’,and Vyy € 9
Pr,. . H(x)=y and H(x’)=y’ ] = 1/IYI?

e Equivalently: V x,x” € X, x # x°, whe Requires = 2n bits

of randomness

H(x), H(x") are independent

 Typical construction: If x={0,1}", o=
View X={0,1}" as GF(2"), use
H={ x+> last-p-bits(ax + b) | a,b € GF(2") }



Left-over Hash Lemma / Privacy Amplification
[BBR,1Z,...]

LOHL [1Z89]: Let H={h.} be 2-wise : (n bits) — (p bits)
It H _(M)>tand > p + 2log(1/€) then
(H,HM))~.(H,U,), when H<JL

e Good for extractors, but not encryption...

IEOHIL - et/ —1h [ihe D-wise (i bits) =>i(r bils)
If A,B indep., and H__(A) + H_(B) > n + 2log(1/¢) then
(GEL AT S BB =1 (CEL S ) wihen! Bl 1




Modified Left-over Hash Lemma

LOHL’: Let H={h;} be 2-wise : (n’ bits) — (n bits)
If A,B indep., and H__(A) + H_(B) > n + 2log(1/¢) then

(H,A@H(B))ze(H,D»\N H 2

Proof idea: As with LOHL, computeeollision probability
 CP(X)=2_p2where p, = Pr[X=x]
« H (X)>t=CP(X) <2 it
Collision probability of ( H, A® H(B) ) is at most 1+|2ﬂ[ "

o If X € Sand CP(X) =(1+2¢?)/IS| then X =~ uniform

s (H,A ® H(B) ) =~ uniform. QED.




Using LOHL’ for Encryption

LOHL’: Let H={h;} be 2-wise : (n’ bits) — (n bits)
If A,B indep., and H__(A) + H_(B) > n + 2log(1/¢) then
(H,A®HMB))~.,(H,U,), when H—H

Schemes a) E(m,s;h)=(h, m+ h(s))

Here # contains
only permutations

or b) Em,s;h)=(h, h(m)+s )%

 Fither a) set A=M, B=S
or b)set A=S, B=M

e LOHL’= (z,¢)-1ndistinguishable for k£ > (n-t) + 2log(1/¢)
= (A,€)-ES for k > A + 2 log(1/¢)



IRWO02]: Two constructions

1. E(m,s) =m & b(s), with b : {0,1}*—{0,1}".
— b(-) is carefully chosen: range is “0-biased set”

— Fourier-based prootf works only for uniform message

— k=2logn+3log(1/¢) (here A = 0)

2. E(m,s; 1) =(0,, 0.(m) + s)

— {0 {0,1}"—={0,1}" } are 3-wise independent permutations
— k=~ A+ 3log (1/€) (works for all A)

— 3n bits of additional randomness, difficult proof




[RWO02]: Second construction

Same scheme, new analysis:

e In particular, #={0,} 1s 2-wise independent permutation family
e LOHL’ = scheme secure for k ~ A + 2 log(1/¢)

e  Simpler schemes are possible...

2. E(m,s; 1) = (0, , 0.(m) + 5)

— {0;: {0,1}"—={0,1}" } are 3-wise independent permutations
— k=~ A+ 3log (1/€) (works for all A)

— 3n bits of additional randomness, difficult proof




Further simplification

e “Full” 2-wise independence unnecessary for LOHL’
e Sufficient: Vx#x: Hx)®HX)=U,

e Construction: H= {x = ax|a € GF(2")}

e The result: E(m,s;a) =(a,m & as)

— Secure for k > A + 2 log(1/¢)

— Uses only 7 additional bits of randomness



Outline

Intuition—Tndictinemichablesel -
 Seen; 1 |

e Lower bounds: k > A, (special case: k > A + log(1/¢€) )

* “Stronger” Equiv. Det.: all functions hard to predict

(not only predicates)



[LLower Bounds

e Lower Bound via Shannon Bound:
k>M\
e Lower bound via lower bounds on extractors:
k > A+ log(1/¢)
— Requires that extra randomness be public, 1.e.
E(m,s;i) =@, E(m,s;1))

— All the schemes discussed fit this framework



[LLower Bounds

e [Lower Bound via Shannon Bound:

k>A

e Lower bound via lower bounds on extractors:
k > A+ log(1/¢)

— Requires that extra randomness be public, 1.e.

E(m,s;i) =@, E(m,s;1))

— All the schemes discussed fit this framework




Simple Lower Bound

Def: (A,e)-entropically secure if VM , H (M) > n-A,vA V pred. g
JA" - | PrAEWMD) = gM)] - Pr{A" = g)] | <e

Proof (reduce to bounds on regular encryption):
+ Vw e {0,1}*, define distribution M, =w Il U, _,
(i.e.. M, = w followed by n-A random bits)

w

* Indistinguishability = Vv,w: E(M,) ~_EM, )

e This is regular encryption (non-entropic) of w !

e Needk> A




[LLower Bounds

e Lower bound via Shannon Bound:
k>M\
e Lower bound via lower bounds on extractors:
k > A+ log(1/¢)
— Requires that extra randomness be public

e These bounds are quite crude

e Probable (?) answer: k > A + 2log(1/¢)



Outline

FESNE ST TRRR | e trae
T Simple—G a et :
— Stepin-an-expander graph —

* “Stronger” Equiv. Det.: all functions hard to predict

(not just predicates)



Indistinguishability tor High Entropy

Def: (A,e)-entropically secure if VM , H (M) > n-A,vA V pred. g

34’ . | PA(EM)) = g(M)] — Pr[AW

Q: Can we replace “for all predicates”
Recall: (Or{ with “for all functions”?

v distriby A Yeg. Resulting definition is even

Definitior] closer to semantic security.

V distributions M,M’ with H_(M) , H_ (M’) > t:
SD(E(M),E(M’)) < €

Proposition: (A,£)-ES equiv. to (¢, €’)-IND for t = n-A-1




Equivalence of Functions and Predicates

For function f, random variable M :
predf(M) = most likely value = max_{ Pr[fAM) =z] }
Main Lemma: Suppose

— Mr.v. with H (M) > 2log(1/¢)

— E() , A() randomized maps, f arbitrary function.

— Prl ACE(M)) =fM) | > pred (M) + €

Then there exist predicates B and g such that
Pr[ BACEMM))) =gM) | > pred, M) +¢&/4



Conclusions

e Systematic study of [RWO02] notion of entropic security
— equivalent definition

— simple constructions, proofs, lower bounds
e “Computational 1ssues’:

— Can these proofs preserve running time of adversaries?

— Use computational min-entropy? (recently provided by [BSW])
e In what other contexts 1s ES interesting?

— Password Hashing [CMR98]: similar definition
— “Fuzzy fingerprints” [DRS03]
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