
1

What can cryptography
do for coding theory?

Adam Smith
Computer Science & Engineering Department

Penn State

http://www.cse.psu.edu/~asmith

ICITS 2009

http://www.cse.psu.edu/~asmith
http://www.cse.psu.edu/~asmith

Two classic channel models

2

• Alice sends n bits

• Binary symmetric channel BSCp

 Flips each bit with probability p

 Shannon: maximum possible rate is 1-H(p)

 Forney: concatenated codes achieve capacity efficiently

• Worst-case (adversarial) errors ADVp

Channel outputs an arbitrary word within distance pn of input

Optimal rate still unknown

Alice BobNoisy channel
010100100101 011100001001

m m?

rate

0 0.1 0.2 0.3 0.4 0.5

0.5

1

Known Bounds

3

BSCp capacity
=1-H(p)=1+plog(p)+(1-p)log(1-p)

p

Advp lower bound
= 1-H(2p) [G.-V.]

Advp upper bounds (badly drawn...)

Why care about worst-case errors?
• Combinatorial interest

key building block for designs, authentication schemes, etc

• Modeling unknown or varying channels

Codes designed for one channel may fail if model wrong

E.g., concatenated codes do badly against bursty errors

4

0 0.1 0.2 0.3 0.4 0.5

0.5

1

This talk: cryptographic tools in coding
• Models of uncertain binary channels

 strong enough to capture wide variety of channel behavior

But reliable communication at Shannon capacity

• Theme: cryptographic perspective

modeling “limited” adversarial behavior

 simpler existence proofs

 techniques for efficient constructions: indistinguishability,

pseudorandomness

5

0 0.1 0.2 0.3 0.4 0.5

0.5

1

• Two kinds of models:

 shared secrets for Alice and Bob

 limited channels

• Two basic techniques

 Sieving list decodable codes

 “Scrambling” (randomizing) adversarial errors

6

Outline

7

• Developing tools: shared secrets

• Computationally limited channels

• Recent results:

Explicit constructions for worst-case “additive” errors [GS’09]

Logspace channels [forthcoming]

Shared Randomness

8

Shared Randomness

9

• Encoder/decoder share random bits s

 code is known to channel but s is unknown

• Theorem 1 [Langberg ’04, ?]: With r=O(log n) shared

bits, Alice can send ≈n(1-H(p)) bits reliably over Advp.

 (not necessarily computationally efficient)

• A simple “cryptographic” proof

Tools: list-decoding, message authentication

Alice BobNoisy channel
010100100101 011100001001m

s ∈ {0, 1}r

m

Tool: List-decodable codes
• A code LDC: {0,1}k → {0,1}n is

(pn,L) list-decodable code if

Every vector in {0,1}n is within

distance pn of at most L codewords

• With LDC, Bob gets a list of L possible codewords

• Proposition [Elias]: There exist (pn,L) list-decodable

codes with rate 1-H(p)-ε and list size L = 1/ε.

10

pn

LDC BobAdvp
LDC(m) LDC(m)+e

m

m1

m2 = m
...
mL

{

Tool: List-decodable codes
• A code LDC: {0,1}k → {0,1}n is

(pn,L) list-decodable code if

Every vector in {0,1}n is within

distance pn of at most L codewords

• With LDC, Bob gets a list of L possible codewords

• Proposition [Elias]: There exist (pn,L) list-decodable

codes with rate 1-H(p)-ε and list size L = 1/ε.

10

pn

LDC BobAdvp
LDC(m) LDC(m)+e

m

m1

m2 = m
...
mL

{
How can Bob figure out which is the right codeword?

Sieving the List

• Idea: Alice authenticates m using s as key

• Theorem 1 [Langberg ’04, ?]: With r=O(log n) shared

bits, Alice can send ≈n(1-H(p)) bits reliably over Advp.

• Proof: If MAC has forgery probability δ, then Bob

corrects Advp errors with probability ≤ L δ
Adversary gets at most L chances to forge

MAC tag can have tag/key length O(log n)
11

DecNoisy channelm

s ∈ {0, 1}r

mMac LDC
t m1,t1

m2,t2

...
mL,tL

{ V
V

V

Computational Efficiency?
• Problem with list-decoding: efficient constructions

only known for p≈0 and p≈1/2

 for other values of p, efficient

constructions have rate well below

capacity

• Theorem 2 [Lipton’94]: With r ≈ n log(n) shared bits,

Alice can Bob can efficiently and reliably communicate

≈n(1-H(p)) bits over Advp

12

rate

0 0.1 0.2 0.3 0.4 0.5

0.5

1

p

Technique #2: Code Scrambling

• Shared randomness to permute errors randomly

Code REC corrects random errors with rate 1-H(p) [Forney]

 s=(π, Δ) where π is a random permutation of {1,...,n}

 and Δ is a random offset in {0,1}n

Encoding: c = π-1(REC(m))+ Δ
13

m

REC(m)

π-1(REC(m))

REC
m

REC(m)+ π(e)

π-1(REC(m))+e

REC decoder

Advp

+
c = π-1(REC(m))+ Δ

Δ +
c + e

Δ

π-1 π

s=(π, Δ)

Technique #2: Code Scrambling

• Theorem 2 [Lipton]: Scrambled code corrects pn

adversarial errors with rate ≈1-H(p)

• Proof: Δ acts as one-time pad

e is independent of π
π(e) is a uniformly random vector of same weight as e (< pn)

14

m

REC(m)

π-1(REC(m))

REC
m

REC(m)+ π(e)

π-1(REC(m))+e

REC decoder

Advp

+
c = π-1(REC(m))+ Δ

Δ +
c + e

Δ

π-1 π

s=(π, Δ)

Computational Efficiency w/ Short Keys?
• Code scrambling uses a long key: log(n!) + n bits

• Open Question: Can we get efficient codes of rate

n(1-H(p)) that correct pn errors with keys of o(n) bits?

• Partial Answer: n+o(n) bits of key suffice

π just has to random enough to “fool” the REC decoder

Lemma [S’07]: Concatenated codes corrected log(n)-wise

independent errors up to Shannon capacity

π only has to be a log(n)-wise independent permutation

Lemma [KNR’05]: log2(n) bits suffice to select π
Get keys of length n + log2(n)... bottleneck is one-time pad!

15

Shared Randomness

• Can correct adversarial errors up to Shannon capacity

Two techniques: sieving list and code scrambling

16

Alice BobNoisy channel
010100100101 011100001001m

s ∈ {0, 1}r

m

Scheme Key length Efficient?
Sieving list log(n) No*
Scrambling n log(n) Yes
Scrambling with t-wise π n + log2(n) Yes

Limited Channels

17

Limited channels
• Idea: consider adversarial yet limited class of channels

processes in nature may vary in strange ways

but they are computationally simple

• Polynomial-time channels [Lipton]

Can strengthen results for shared randomness model

Models with no setup?

• Additive channels [A,CN]

Model noise that is oblivious to individual bits

Explicit, poly-time constructions

18

Polynomial-time Adversaries
• Shared key setting [Lipton]

Use a p.r.g. to do code scrambling with a short seed

Get O(log n)-bit keys and efficient decoding (assuming OWF)

Alice BobNoisy channel
010100100101 011100001001m

s ∈ {0, 1}r

m

G G

Polynomial-time Adversaries
• Shared key setting [Lipton]

Use a p.r.g. to do code scrambling with a short seed

Get O(log n)-bit keys and efficient decoding (assuming OWF)

• Public key setting [Micali, Peikert, Sudan, Wilson]

Alice broadcasts a public key; keeps a secret key

Replace MAC with signatures in list-sieving

Alice BobNoisy channel
010100100101 011100001001m

s ∈ {0, 1}r

m

G G

DecNoisy channelm mSign LDC
t m1,t1

m2,t2

...
mL,tL

{ V
V

V

What about models without setup?
• Nothing (significant) is known regarding polynomial time

 Some bounds clearly apply (e.g. Shannon bound)

Unclear if one can beat information-theoretic bounds for

adversarial channels

• Different extreme: additive channels

very simple channels

error pattern is adversarial, but independent of codeword

21

Worst-case additive errors

• Adversary picks error pattern e of weight < pn

before seeing codeword

Adversary knows code and message

Alice generates local random bits r (unknown to Bob/channel)

• Generalizes natural symmetric error models

 e.g., BSC, burst errors

• Natural step towards general classes of channels

• Special case of state-constrained AVC [Csiszár-Narayan] 22

Alice Bob

WAE
c c + em m+

r

Worst-case additive errors

• AVC’s literature has general upper/lower bounds

• Theorem 3 [Csiszár-Narayan, Langberg]: There exist

codes with rate ≈1-H(p) that correct pn additive

errors.

Complex random coding arguments

• [Guruswami-S., ’09]: This talk

 Simpler existence proof via sieving LDC’s

Explicit construction with efficient encoding / decoding
23

Alice Bob

WAE
c c + em m+

r

Tool: Algebraic Manipulation Detection [CDFPW’08]

• “Error detection” for additive errors

• Randomized encoding AMD: m ⟼ AMD(m,r)

Verify(AMD(m,r)) =1 always

 For all fixed error patterns e, w.h.p. over r,

 Verify(AMD(m,r)+e)=false

• Simple construction expands m by O(log(n)) bits

Use m to choose coefficients of low-degree polynomial fm

AMD(m,r) = (m, r, fm(r))

Lemma [DKRS]: If we ensure that the leading coefficients of

fm have the right form, then for all m and for all offsets a,b,c:

 Pr(fm+a(r+b)= fm(r)+c) is small 24

Good codes for additive errors [GS’09]
• Use AMD scheme to sieve list of linear LDC

• This corrects as many errors as LDC

 For any string x, Dec(LDC(x)+e) = {x, x+e2, ... x+eL}

 Since LDC is linear, errors e2, ..., eL independent of x

AMD rejects all non-zero errors w.h.p.

• Lemma [Guruswami-Hastad-Sudan-Zuckerman]: There

exist linear LDC with rate 1-H(p)-ε and list size O(1/ε).
• Consequence: additive errors codes w. rate 1-H(p) exist

25

DecWAEm mAMD LDC
m1,t1

m2,t2

...
mL,tL

{ V
V

VAlice

Efficient Constructions
• List-decoding construction not efficient in general

Would like to get to capacity for all error rates p

• Idea:

bootstrap from “small” code (decodable by brute force)

to “big code” (decodable efficiently)

 Standard tool: concatenation [Forney]

• Use big code over large alphabet + small code to encode symbols

• Concatenation works poorly for worst-case errors

• Adversary can concentrate errors in blocks (e.g. bursts)

 Instead: use small code to share secret key for scrambling

• Interleave small code blocks into big code blocks pseudorandomly

26

Control/payload construction
• Two main pieces

 Scrambled “payload codeword”: π-1(REC(m)) + Δ
• π is a log2(n)-wise independent permutation,

• Δ is a log2(n)-wise independent bit string

• Broken into blocks of length log(n)

27

message m

REC(m)

REC

Capacity-

approaching code

that corrects t-

wise indep. errors

!(REC(m))

t-wise
independent

permutation!"

of {1,...,n}

· · ·

Chop

into

blocks of

length

O(log(n))

bits

π−1

!(REC(m)) + !

+

t-wise
independent

offset !

∆

Control/payload construction
• Two main pieces

 Scrambled “payload codeword”: π-1(REC(m)) + Δ

28

Control/payload construction
• Two main pieces

 Scrambled “payload codeword”: π-1(REC(m)) + Δ
 “Control information”: ω = (π, Δ,T)

• T is a set of blocks in {1,..., n/log(n)}

• ω is encoded using Reed-Solomon-code into “control blocks”

• Each control block encoded using small LDC+AMD code

29

!

f(α1), f(α2), ..., f(αk)

α1, f(α1) α2, f(α2) · · · αk, f(αk)

· · ·
SC

C1 C2 Ck

SC SC

constant-rate

code that

corrects p+eps

adversarial

errors

RS
Control

information

Encoding to handle
insertions/deletions

Rate 1/eps

Reed-Solomon

code

blocks of length

O(log(N)) bits

Control/payload construction
• Two main pieces

 Scrambled “payload codeword”: π-1(REC(m)) + Δ
 “Control information”: ω = (π, Δ,T)

30

Control/payload Construction

31

• Two main pieces

 Scrambled “payload codeword”: π-1(REC(m)) + Δ
 “Control information”: ω = (π, Δ,T)

• Combine by interleaving according to T

message m

REC(m)

REC

!(REC(m))

!

f(α1), f(α2), ..., f(αk)

α1, f(α1) α2, f(α2) · · · αk, f(αk)

· · ·
SC

C1 C2 Ck

SC SC

RS

Encoding to handle
insertions/deletions

· · ·

· · ·
Final codeword

"Payload" codeword Control info

π−1

!(REC(m)) + "

+ ∆

Control/payload Construction

32

• Decoding idea

 First decode control information, block by block

Given control information, unpermute scrambled code

Analysis delicate but follows lines of intuition

message m

REC(m)

REC

!(REC(m))

!

f(α1), f(α2), ..., f(αk)

α1, f(α1) α2, f(α2) · · · αk, f(αk)

· · ·
SC

C1 C2 Ck

SC SC

RS

Encoding to handle
insertions/deletions

· · ·

· · ·
Final codeword

"Payload" codeword Control info

π−1

!(REC(m)) + "

+ ∆

Outline

33

• Developing tools: shared secrets

• Computationally limited channels

• Recent results:

Explicit constructions for worst-case “additive” errors [GS’09]

Logspace channels [forthcoming]

Logspace channels
• Additive channels natural but maybe too limited

What if channel sets bits to 0/1?

 Flips 0 to 1 more often than 1 to 0?

• Limited-memory channels

Errors introduced online, as codeword passes through channel

Channel can only remember t bits

Modeled as branching program with width 2t

 t = O(log n) captures every channel I can think of...

 t=n: “online channels” [Langberg], known to be quite powerful

• Can we achieve Shannon capacity?
34

Conclusions
• Models for achieving maximum transmission rates in

binary channels, despite uncertain or adversarial channel

behavior

• Perspective, tools from cryptography / derandomization

Disciplinary lines are artificial

Crypto / information theory communities share many

questions and techniques

But also lots of ideas take time to cross over

35

