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Two classic channel models
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• Alice sends n bits

• Binary symmetric channel BSCp

 Flips each bit with probability p

 Shannon: maximum possible rate is 1-H(p)

 Forney: concatenated codes achieve capacity efficiently

• Worst-case (adversarial) errors ADVp

Channel outputs an arbitrary word within distance pn of input

Optimal rate still unknown

Alice BobNoisy channel
010100100101 011100001001

m m?
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Known Bounds
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BSCp capacity 
=1-H(p)=1+plog(p)+(1-p)log(1-p)

p

Advp lower bound 
= 1-H(2p)   [G.-V.]

Advp upper bounds (badly drawn...)



Why care about worst-case errors?
• Combinatorial interest

key building block for designs, authentication schemes, etc 

• Modeling unknown or varying channels

Codes designed for one channel may fail if model wrong 

E.g., concatenated codes do badly against bursty errors
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This talk: cryptographic tools in coding
• Models of uncertain binary channels

 strong enough to capture wide variety of channel behavior

But reliable communication at Shannon capacity

• Theme: cryptographic perspective

modeling “limited” adversarial behavior

 simpler existence proofs

 techniques for efficient constructions: indistinguishability, 

pseudorandomness
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• Two kinds of models: 

 shared secrets for Alice and Bob

 limited channels

• Two basic techniques

 Sieving list decodable codes

 “Scrambling” (randomizing) adversarial errors 
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Outline
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• Developing tools: shared secrets

• Computationally limited channels

• Recent results: 

Explicit constructions for worst-case “additive” errors [GS’09]

Logspace channels [forthcoming]



Shared Randomness
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Shared Randomness
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• Encoder/decoder share random bits s

 code is known to channel but s is unknown

• Theorem 1 [Langberg ’04, ?]:  With r=O(log n) shared 

bits, Alice can send ≈n(1-H(p)) bits reliably over Advp.

 (not necessarily computationally efficient)

• A simple “cryptographic” proof

Tools: list-decoding, message authentication

Alice BobNoisy channel
010100100101 011100001001m

s ∈ {0, 1}r

m



Tool: List-decodable codes
• A code LDC: {0,1}k → {0,1}n is 

(pn,L) list-decodable code if

Every vector in {0,1}n is within 

distance pn of at most L codewords

• With LDC, Bob gets a list of L possible codewords

• Proposition [Elias]: There exist (pn,L) list-decodable 

codes with rate 1-H(p)-ε and list size L = 1/ε.
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Tool: List-decodable codes
• A code LDC: {0,1}k → {0,1}n is 

(pn,L) list-decodable code if

Every vector in {0,1}n is within 

distance pn of at most L codewords

• With LDC, Bob gets a list of L possible codewords

• Proposition [Elias]: There exist (pn,L) list-decodable 

codes with rate 1-H(p)-ε and list size L = 1/ε.
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Sieving the List

• Idea:  Alice authenticates m using s as key

• Theorem 1 [Langberg ’04, ?]:  With r=O(log n) shared 

bits, Alice can send ≈n(1-H(p)) bits reliably over Advp.

• Proof: If MAC has forgery probability δ, then Bob 

corrects Advp errors with probability ≤ L δ
Adversary gets at most L chances to forge

MAC tag can have tag/key length O(log n)
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Computational Efficiency?
• Problem with list-decoding: efficient constructions 

only known for p≈0 and p≈1/2

 for other values of p, efficient 

constructions have rate well below 

capacity

• Theorem 2 [Lipton’94]:  With r ≈ n log(n) shared bits,  

Alice can Bob can efficiently and reliably communicate 

≈n(1-H(p)) bits over Advp
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Technique #2: Code Scrambling

• Shared randomness to permute errors randomly

Code REC corrects random errors with rate 1-H(p)  [Forney]

 s=(π, Δ) where π is a random permutation of {1,...,n}

               and    Δ is a random offset in {0,1}n

Encoding:     c = π-1(REC(m))+ Δ
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Technique #2: Code Scrambling

• Theorem 2 [Lipton]: Scrambled code corrects pn 

adversarial errors with rate ≈1-H(p)

• Proof: Δ acts as one-time pad

e is independent of π
π(e) is a uniformly random vector of same weight as e (< pn)
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Computational Efficiency w/ Short Keys?
• Code scrambling uses a long key: log(n!) + n bits

• Open Question: Can we get efficient codes of rate 

n(1-H(p)) that correct pn errors with keys of o(n) bits?

• Partial Answer: n+o(n) bits of key suffice

π just has to random enough to “fool” the REC decoder 

Lemma [S’07]: Concatenated codes corrected log(n)-wise 

independent errors up to Shannon capacity

π only has to be a log(n)-wise independent permutation

Lemma [KNR’05]: log2(n) bits suffice to select π
Get keys of length n + log2(n)... bottleneck is one-time pad!
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Shared Randomness

• Can correct adversarial errors up to Shannon capacity

Two techniques: sieving list and code scrambling
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Alice BobNoisy channel
010100100101 011100001001m

s ∈ {0, 1}r

m

Scheme Key length Efficient?
Sieving list log(n) No*
Scrambling n log(n) Yes
Scrambling with t-wise π n + log2(n) Yes



Limited Channels
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Limited channels
• Idea: consider adversarial yet limited class of channels

processes in nature may vary in strange ways 

but they are computationally simple

• Polynomial-time channels [Lipton]

Can strengthen results for shared randomness model

Models with no setup?

• Additive channels [A,CN]

Model noise that is oblivious to individual bits

Explicit, poly-time constructions
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Polynomial-time Adversaries
• Shared key setting [Lipton]

Use a p.r.g. to do code scrambling with a short seed 

Get O(log n)-bit keys and efficient decoding (assuming OWF)

Alice BobNoisy channel
010100100101 011100001001m

s ∈ {0, 1}r

m
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Polynomial-time Adversaries
• Shared key setting [Lipton]

Use a p.r.g. to do code scrambling with a short seed 

Get O(log n)-bit keys and efficient decoding (assuming OWF)

• Public key setting [Micali, Peikert, Sudan, Wilson]

Alice broadcasts a public key; keeps a secret key

Replace MAC with signatures in list-sieving

Alice BobNoisy channel
010100100101 011100001001m

s ∈ {0, 1}r
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What about models without setup?
• Nothing (significant) is known regarding polynomial time

 Some bounds clearly apply (e.g. Shannon bound)

Unclear if one can beat information-theoretic bounds for 

adversarial channels

• Different extreme: additive channels

very simple channels

error pattern is adversarial, but independent of codeword
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Worst-case additive errors

• Adversary picks error pattern e of weight < pn 

before seeing codeword 

Adversary knows code and message

Alice generates local random bits r (unknown to Bob/channel)

• Generalizes natural symmetric error models

 e.g., BSC, burst errors

• Natural step towards general classes of channels

• Special case of state-constrained AVC [Csiszár-Narayan] 22
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Worst-case additive errors

• AVC’s literature has general upper/lower bounds

• Theorem 3 [Csiszár-Narayan, Langberg]: There exist 

codes with rate ≈1-H(p) that correct pn additive 

errors.

Complex random coding arguments

• [Guruswami-S., ’09]: This talk

 Simpler existence proof via sieving LDC’s

Explicit construction with efficient encoding / decoding
23
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Tool: Algebraic Manipulation Detection [CDFPW’08]

• “Error detection” for additive errors

• Randomized encoding AMD: m ⟼  AMD(m,r)

Verify(AMD(m,r)) =1 always

 For all fixed error patterns e,  w.h.p. over r,  

                Verify(AMD(m,r)+e)=false

• Simple construction expands m by O(log(n)) bits

Use m to choose coefficients of low-degree polynomial fm

AMD(m,r) = (m, r, fm(r) )

Lemma [DKRS]: If we ensure that the leading coefficients of 

fm have the right form, then for all m and for all offsets a,b,c:

               Pr( fm+a(r+b)= fm(r)+c ) is small 24



Good codes for additive errors [GS’09]
• Use AMD scheme to sieve list of linear LDC

• This corrects as many errors as LDC

 For any string x, Dec( LDC(x)+e ) = {x, x+e2, ... x+eL}

 Since LDC is linear, errors e2, ..., eL independent of x

AMD rejects all non-zero errors w.h.p.

• Lemma [Guruswami-Hastad-Sudan-Zuckerman]: There 

exist linear LDC with rate 1-H(p)-ε and list size O(1/ε).
• Consequence: additive errors codes w. rate 1-H(p) exist
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Efficient Constructions
• List-decoding construction not efficient in general

Would like to get to capacity for all error rates p

• Idea: 

bootstrap from “small” code (decodable by brute force) 

to “big code” (decodable efficiently)

 Standard tool: concatenation [Forney]

• Use big code over large alphabet + small code to encode symbols

• Concatenation works poorly for worst-case errors

• Adversary can concentrate errors in blocks (e.g. bursts)

 Instead: use small code to share secret key for scrambling

• Interleave small code blocks into big code blocks pseudorandomly

26



Control/payload construction
• Two main pieces

 Scrambled “payload codeword”: π-1(REC(m)) + Δ
• π is a log2(n)-wise independent permutation, 

• Δ is a log2(n)-wise independent bit string

• Broken into blocks of length log(n)
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Control/payload construction
• Two main pieces

 Scrambled “payload codeword”: π-1(REC(m)) + Δ
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Control/payload construction
• Two main pieces

 Scrambled “payload codeword”: π-1(REC(m)) + Δ
 “Control information”: ω = (π, Δ,T) 

• T is a set of blocks in {1,..., n/log(n)}

• ω is encoded using Reed-Solomon-code into “control blocks”

• Each control block encoded using small LDC+AMD code
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Control/payload construction
• Two main pieces

 Scrambled “payload codeword”: π-1(REC(m)) + Δ
 “Control information”: ω = (π, Δ,T) 
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Control/payload Construction

31

• Two main pieces

 Scrambled “payload codeword”: π-1(REC(m)) + Δ
 “Control information”: ω = (π, Δ,T) 

• Combine by interleaving according to T
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Control/payload Construction
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• Decoding idea

 First decode control information, block by block

Given control information, unpermute scrambled code

Analysis delicate but follows lines of intuition

message m
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Outline
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• Developing tools: shared secrets

• Computationally limited channels

• Recent results: 

Explicit constructions for worst-case “additive” errors [GS’09]

Logspace channels [forthcoming]



Logspace channels
• Additive channels natural but maybe too limited

What if channel sets bits to 0/1?

 Flips 0 to 1 more often than 1 to 0?

• Limited-memory channels

Errors introduced online, as codeword passes through channel

Channel can only remember t bits

Modeled as branching program with width 2t

 t = O(log n) captures every channel I can think of...

 t=n: “online channels” [Langberg], known to be quite powerful

• Can we achieve Shannon capacity?
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Conclusions
• Models for achieving maximum transmission rates in 

binary channels, despite uncertain or adversarial channel 

behavior

• Perspective, tools from cryptography / derandomization

Disciplinary lines are artificial

Crypto / information theory communities share many 

questions and techniques

But also lots of ideas take time to cross over
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